Skip to main content
Log in

Polysaccharide and phlorotannin-enriched extracts of the brown seaweed Ecklonia radiata influence human gut microbiota and fermentation in vitro

  • 22ND INTERNATIONAL SEAWEED SYMPOSIUM, COPENHAGEN
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study aimed to understand the prebiotic potential and contribution of four extract fractions from the brown seaweed Ecklonia radiata. Four seaweed fractions were tested for their digestibility and prebiotic effects using an in vitro anaerobic fermentation system containing human faecal inocula. After 24 h fermentation, three seaweed fractions, except the phlorotannin-enriched fraction (PF), significantly increased (P < 0.05) total short chain fatty acid (SCFA) production (68.9–97.3 μmol mL−1) compared to the negative controls comprising either of a blank (36.3 μmol mL−1) or cellulose (39.7 μmol mL−1). The low molecular weight (MW) polysaccharide-enriched fraction (LPF) stimulated the growth of beneficial bacteria including Bifidobacterium, Lactobacillus, and Clostridium coccoides. The high MW polysaccharide-enriched fraction (HPF) showed the greatest potential for improving gut health as this fraction was not digestible by enzymes present in the small intestine, and induced significantly higher butyric acid production (8.2 μmol mL−1) than the positive control, inulin (2.3 μmol mL−1). These findings further demonstrate that E. radiata-derived polysaccharides have the potential to be used as dietary supplements with gut health benefits, worthy of further in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2013) Prebiotics as functional foods: a review. J Funct Foods 5:1542–1553

    Article  CAS  Google Scholar 

  • Bahar B, O’Doherty JV, Smyth TJ, Sweeney T (2016) A comparison of the effects of an Ascophyllum nodosum ethanol extract and its molecular weight fractions on the inflammatory immune gene expression in-vitro and ex-vivo. Innovative Food Sci Emerg 37:276–285

    Article  CAS  Google Scholar 

  • Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AMS, Ramakrishna BS (2010) Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Brit J Nutr 103:335–338

    Article  CAS  PubMed  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo MET (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70:3575–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird A, Conlon M, Christophersen C, Topping D (2010) Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benefic Microbes 1:423–431

    Article  CAS  Google Scholar 

  • Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Charoensiddhi S, Conlon MA, Vuaran MS, Franco CMM, Zhang W (2016a) Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. J Funct Foods 24:221–230

    Article  CAS  Google Scholar 

  • Charoensiddhi S, Franco C, Su P, Zhang W (2015) Improved antioxidant activities of brown seaweed Ecklonia radiata extracts prepared by microwave-assisted enzymatic extraction. J Appl Phycol 27:2049–2058

    Article  CAS  Google Scholar 

  • Charoensiddhi S, Lorbeer AJ, Lahnstein J, Bulone V, Franco CMM, Zhang W (2016b) Enzyme-assisted extraction of carbohydrates from the brown alga Ecklonia radiata: effect of enzyme type, pH and buffer on sugar yield and molecular weight profiles. Process Biochem 51:1503–1510

    Article  CAS  Google Scholar 

  • Comino P, Shelat K, Collins H, Lahnstein J, Gidley MJ (2013) Separation and purification of soluble polymers and cell wall fractions from wheat, rye and hull less barley endosperm flours for structure-nutrition studies. J Agric Food Chem 61:12111–12122

    Article  CAS  PubMed  Google Scholar 

  • Conlon MA, Bird AR (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44

    Article  Google Scholar 

  • Corona G, Ji Y, Anegboonlap P, Hotchkiss S, Gill C, Yaqoob P, Spencer JPE, Rowland I (2016) Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers. Brit J Nutr 115:1240–1253

    Article  CAS  PubMed  Google Scholar 

  • de Jesus Raposo MF, de Morais AMMB, de Morais RMSC (2016) Emergent sources of prebiotics: seaweeds and microalgae. Mar Drugs 14:1–27

    Article  Google Scholar 

  • Delzenne NM, Kok N (2001) Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr 73:456S–458S

    CAS  PubMed  Google Scholar 

  • Deniaud-Bouët E, Kervarec N, Michel G, Tonon T, Kloareg B, Hervé C (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot 114:1203–1216

    Article  PubMed  PubMed Central  Google Scholar 

  • Devillé C, Damas J, Forget P, Dandrifosse G, Peulen O (2004) Laminarin in the dietary fibre concept. J Sci Food Agric 84:1030–1038

    Article  Google Scholar 

  • Devillé C, Gharbi M, Dandrifosse G, Peulen O (2007) Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric 87:1717–1725

    Article  Google Scholar 

  • Dierick N, Ovyn A, De Smet S (2010) In vitro assessment of the effect of intact marine brown macro-algae Ascophyllum nodosum on the gut flora of piglets. Livestock Sci 133:154–156

    Article  Google Scholar 

  • Eom SH, Kim YM, Kim SK (2012) Antimicrobial effect of phlorotannins from marine brown algae. Food Chem Toxicol 50:3251–3255

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K (2008) Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47:367–373

    Article  CAS  PubMed  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29:701–725

    Article  CAS  PubMed  Google Scholar 

  • Jeon YJ, Wijesinghe WAJP, Kim SK (2012) Enzyme-assisted extraction and recovery of bioactive components from seaweeds. In: Kim SK (ed) Handbook of marine macroalgae: biotechnology and applied phycology. John Wiley & Sons, Ltd., Chichester, pp 221–228

    Google Scholar 

  • Kleerebezem M, Vaughan EE (2009) Probiotic and gut Lactobacilli and Bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290

    Article  CAS  PubMed  Google Scholar 

  • Kuda T, Kosaka M, Hirano S, Kawahara M, Sato M, Kaneshima T, Nishizawa M, Takahashi H, Kimura B (2015) Effect of sodium-alginate and laminaran on Salmonella typhimurium infection in human enterocyte-like HT-29-Luc cells and BALB/c mice. Carbohydr Polym 125:113–119

    Article  CAS  PubMed  Google Scholar 

  • Kusaykin MI, Silchenko AS, Zakharenko AM, Zvyagintseva TN (2016) Fucoidanases. Glycobiology 26:3–12

    Article  CAS  PubMed  Google Scholar 

  • Lahaye M (1991) Marine algae as sources of fibres: determination of soluble and insoluble dietary fibre contents in some ‘sea vegetables’. J Sci Food Agric 54:587–594

    Article  CAS  Google Scholar 

  • Lean QY, Eri RD, Fitton JH, Patel RP, Gueven N (2015) Fucoidan extracts ameliorate acute colitis. PLoS One 10(6):e0128453

    Article  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Nat Acad Sci USA 102:11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li G, Shang Q, Chen X, Liu W, Pi X, Zhu L, Yin Y, Yu G, Wang X (2016) In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe 39:19–25

    Article  CAS  PubMed  Google Scholar 

  • Lorbeer AJ, Lahnstein J, Fincher GB, Su P, Zhang W (2015) Kinetics of conventional and microwave-assisted fucoidan extractions from the brown alga, Ecklonia radiata. J Appl Phycol 27:2079–2087

    Article  CAS  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Sweeney T, Callan J, O’Sullivan J, O’Doherty J (2010) The effect of dietary Laminaria derived laminarin and fucoidan on intestinal microflora and volatile fatty acid concentration in pigs. Livestock Sci 133:157–160

    Article  Google Scholar 

  • Michel C, Lahaye M, Bonnet C, Mabeau S, Barry JL (1996) In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Brit J Nutr 75:263–280

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan L, Murphy B, McLoughlin P, Duggan P, Lawlor PG, Hughes H, Gardiner GE (2010) Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs 8:2038–2064

    Article  PubMed  PubMed Central  Google Scholar 

  • Praznik W, Loeppert R, Viernstein H, Haslberger AG, Unger FM (2015) Dietary fiber and prebiotics. In: Ramawat KG, Mérillon JM (eds) Polysaccharides: bioactivity and biotechnology. Springer, Cham, pp 891–925

    Chapter  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman M, Ambalam P, Doble M (2016) Short-chain fatty acids. In: Raman M, Ambalam P, Doble M (eds) Probiotics and bioactive carbohydrates in colon cancer management. Springer, New Delhi, pp 97–115

    Chapter  Google Scholar 

  • Ramnani P, Chitarrari R, Tuohy K, Grant J, Hotchkiss S, Philp K, Campbell R, Gill C, Rowland I (2012) In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe 18:1–6

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues D, Walton G, Sousa S, Rocha-Santos TA, Duarte AC, Freitas AC, Gomes AM (2016) In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT-Food Sci Technol 73:131–139

    Article  CAS  Google Scholar 

  • Salazar N, Gueimonde M, Hernández-Barranco AM, Ruas-Madiedo P, de los Reyes-Gavilán, CG (2008) Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol 74: 4737–4745.

  • Salyers A, Palmer J, Wilkins T (1978) Degradation of polysaccharides by intestinal bacterial enzymes. Am J Clin Nutr 31:S128–S130

    CAS  PubMed  Google Scholar 

  • Shang Q, Shan X, Cai C, Hao J, Li G, Yu G (2016) Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct 7:3224–3232

    Article  CAS  PubMed  Google Scholar 

  • Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064

    CAS  PubMed  Google Scholar 

  • Womersley H (1990) Biogeography of Australasian marine macroalgae. In: Clayton MN, King RJ (eds) Biology of marine plants. Longman Cheshire, Melbourne, pp 367–381

    Google Scholar 

  • Zaporozhets TS, Besednova NN, Kuznetsova TA, Zvyagintseva TN, Makarenkova ID, Kryzhanovsky SP, Melnikov VG (2014) The prebiotic potential of polysaccharides and extracts of seaweeds. Russ J Mar Biol 40:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding support from the Premier’s Research and Industry Fund of the South Australian Government, Qingdao Gather Great Ocean Seaweed Industry Co., Ltd., the Australian Research Council (Project ID: LP150100225), and Flinders University as well as the technical support from CSIRO Health and Biosecurity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charoensiddhi, S., Conlon, M.A., Vuaran, M.S. et al. Polysaccharide and phlorotannin-enriched extracts of the brown seaweed Ecklonia radiata influence human gut microbiota and fermentation in vitro. J Appl Phycol 29, 2407–2416 (2017). https://doi.org/10.1007/s10811-017-1146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1146-y

Keywords

Navigation