Skip to main content
Log in

Candida rugosa Lipase Immobilization on Fe3O4 Coated Carboxyl Functionalised Multiwalled Carbon Nanotubes for Production of Food Flavour Esters

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The objective of the study was carboxyl functionalization of Fe3O4 coated multiwalled carbon nanotubes (MWCNTs), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) / N-hydroxysuccinimide (NHS) mediated immobilization of Candida rugosa lipase on MWCNTs through rigid base of dopamine, flexible spacer ethyl methacrylate with adipic acid for improved enzyme characteristics including enhanced dispersion and separation; and use in production of flavour esters ethyl butyrate and butyl butyrate. The immobilized enzyme nanoparticles were characterised by using high resolution transmission electron microscopy (HRTEM), Fourier transmission infrared spectroscopy (FTIR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), zeta potential analysis. Maximum protein loading of 133.83 mg g−1 support and immobilized enzyme activity 4,889.2 U g−1 support was obtained at the optimal time, pH, temperature, protein to support ratio. Immobilized enzyme was tested for pH, thermal, and storage stability. The esterification yields of ethyl butyrate 89.69% and butyl butyrate 91.07% were obtained under optimal conditions. The immobilized enzyme was separated from reaction mixture using the superparamagnetic property and reused for 11 cycles of esterification. Study showed the immobilized enzyme could be used for production of various fruit flavour esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Onoja, E., S. Chandren, F. I. A. Razak, and R. A. Wahab (2018) Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: process optimization, kinetic and thermodynamic study. J. Taiwan Inst. Chem. Eng. 91: 105–118.

    Article  CAS  Google Scholar 

  2. Santos, J. C. and H. F. de Castro (2006) Optimization of lipase-catalysed synthesis of butyl butyrate using a factorial design. World J. Microbiol. Biotechnol. 22: 1007–1011.

    Article  CAS  Google Scholar 

  3. de Oliveira, U. M. F., L. J. B. Lima de Matos, M. C. M. de Souza, B. B. Pinheiro, J. C. S. dos Santos, and L. R. B. Gonçalves (2019) Efficient biotechnological synthesis of flavor esters using a low-cost biocatalyst with immobilized Rhizomucor miehei lipase. Mol. Biol. Rep. 46: 597–608.

    Article  CAS  PubMed  Google Scholar 

  4. Elias, N., S. Chandren, F. I. A. Razak, J. Jamalis, N. Widodo, and R. A. Wahab (2018) Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass. Int. J. Biol. Macromol. 114: 306–316.

    Article  CAS  PubMed  Google Scholar 

  5. Asmat, S., A. H. Anwer, and Q. Husain (2019) Immobilization of lipase onto novel constructed polydopamine grafted multiwalled carbon nanotube impregnated with magnetic cobalt and its application in synthesis of fruit flavours. Int. J. Biol. Macromol. 140: 484–495.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, D.-H., L.-X. Yuwen, C. Li, and Y.-Q. Li (2012) Effect of poly(vinyl acetate-acrylamide) microspheres properties and steric hindrance on the immobilization of Candida rugosa lipase. Bioresour. Technol. 124: 233–236.

    Article  CAS  PubMed  Google Scholar 

  7. Shu, C., J. Cai, L. Huang, X. Zhu, and Z. Xu (2011) Biocatalytic production of ethyl butyrate from butyric acid with immobilized Candida rugosa lipase on cotton cloth. J. Mol. Catal. B Enzym. 72: 139–144.

    Article  CAS  Google Scholar 

  8. Mohamad, N. R., N. A. Buang, N. A. Mahat, Y. Y. Lok, F. Huyop, H. Y. Aboul-Enein, and R. Abdul Wahab (2015) A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes. Enzyme Microb. Technol. 72: 49–55.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, J., Tao-Wang, J. Lin, L. Yang, and M.-B. Wu (2019) Preparation of high-purity 1,3-diacylglycerol using performance-enhanced lipase immobilized on nanosized magnetite particles. Biotechnol. Bioprocess Eng. 24: 326–336.

    Article  CAS  Google Scholar 

  10. Almeida, A. F., C. R. F. Terrasan, C. C. Terrone, S. M. Tauk-Tornisielo, and E. C. Carmona (2018) Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: hydrolysis of triacylglycerol and soy lecithin. Process Biochem. 65: 71–80.

    Article  CAS  Google Scholar 

  11. Li, X., T. Liu, L. Xu, X. Gui, F. Su, and Y. Yan (2012) Resolution of racemic ketoprofen in organic solvents by lipase from Burkholderia cepacia G63. Biotechnol. Bioprocess Eng. 17: 1147–1155.

    Article  CAS  Google Scholar 

  12. Min, K., J. Kim, K. Park, and Y. J. Yoo (2012) Enzyme immobilization on carbon nanomaterials: loading density investigation and zeta potential analysis. J. Mol. Catal. B Enzym. 83: 87–93.

    Article  CAS  Google Scholar 

  13. Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58.

    Article  CAS  Google Scholar 

  14. Boncel, S., A. Zniszczol, K. Szymańska, J. Mrowiec-Białoń, A. Jarzębski, and K. Z. Walczak (2013) Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters. Enzyme Microb. Technol. 53: 263–270.

    Article  CAS  PubMed  Google Scholar 

  15. Baughman, R. H., A. A. Zakhidov, and W. A. de Heer (2002) Carbon nanotubes--the route toward applications. Science 297: 787–792.

    Article  CAS  PubMed  Google Scholar 

  16. Raghavendra, T., A. Basak, L. M. Manocha, A. R. Shah, and D. Madamwar (2013) Robust nanobioconjugates of Candida antarctica lipase B--multiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis. Bioresour. Technol. 140: 103–110.

    Article  CAS  PubMed  Google Scholar 

  17. Rastian, Z., A. A. Khodadadi, Z. Guo, F. Vahabzadeh, and Y Mortazavi (2016) Plasma functionalized multiwalled carbon nanotubes for immobilization of Candida antarctica lipase B: production of biodiesel from methanolysis of rapeseed oil. Appl. Biochem. Biotechnol. 178: 974–989.

    Article  CAS  PubMed  Google Scholar 

  18. Fan, Y., F. Su, K. Li, C. Ke, and Y. Yan (2017) Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production. Sci. Rep. 7: 45643.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dwivedee, B. P., J. Bhaumik, S. K. Rai, J. K. Laha, and U. C. Banerjee (2017) Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds. Bioresour Technol. 239: 464–471.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, J., K. Li, Y. He, Y. Wang, J. Yan, L. Xu, X. Han, and Y. Yan (2020) Lipase immobilized on a novel rigid-flexible dendrimer-grafted hierarchically porous magnetic microspheres for effective resolution of (R,S)-1-phenylethanol. ACS Appl. Mater. Interfaces 12: 4906–4916.

    Article  CAS  PubMed  Google Scholar 

  21. Eivazzadeh-Keihan, R., H. Bahreinizad, Z. Amiri, H. A. M. Aliabadi, M. Salimi-Bani, A. Nakisa, F. Davoodi, B. Tahmasebi, F. Ahmadpour, F. Radinekiyan, A. Maleki, M. R. Hamblin, M. Mahdavi, and H. Madanchi (2021) Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. Trends Analyt. Chem. 141: 116291.

    Article  CAS  Google Scholar 

  22. Leong, S. S., Z. Ahmad, S. C. Low, J. Camacho, J. Faraudo, and J. Lim (2020) Unified view of magnetic nanoparticle separation under magnetophoresis. Langmuir 36: 8033–8055.

    Article  CAS  PubMed  Google Scholar 

  23. Winkler, U. K. and M. Stuckmann (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138: 663–670.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  25. Datsyuk, V., M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon N. Y. 46: 833–840.

    Article  CAS  Google Scholar 

  26. Fan, X. and X. Li (2012) Preparation and magnetic property of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles. New Carbon Mater. 27: 111–116.

    Article  CAS  Google Scholar 

  27. Kumar, S., A. K. Jana, M. Maiti, and I. Dhamija (2014) Carbodiimide-mediated immobilization of serratiopeptidase on amino-, carboxyl-functionalized magnetic nanoparticles and characterization for target delivery. J. Nanopart. Res. 16: 2233.

    Article  Google Scholar 

  28. Abuilaiwi, F. A., T. Laoui, M. Al-Harthi, and M. A. Atieh (2010) Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. Arab. J. Sci. Eng. 35: 37–48.

    CAS  Google Scholar 

  29. Zhu, W., Y. Zhang, C. Hou, D. Pan, J. He, and H. Zhu (2016) Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer. J. Nanopart. Res. 18: 32.

    Article  Google Scholar 

  30. Sam, S., L. Touahir, J. Salvador Andresa, P. Allongue, J. N. Chazalviel, A. C. Gouget-Laemmel, C. Henry de Villeneuve, A. Moraillon, F. Ozanam, N. Gabouze, and S. Djebbar (2010) Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir 26: 809–814.

    Article  CAS  PubMed  Google Scholar 

  31. Vikesland, P. J., R. L. Rebodos, J. Y. Bottero, J. Rose, and A. Masion (2016) Aggregation and sedimentation of magnetite nanoparticle clusters. Environ. Sci. Nano 3: 567–577.

    Article  CAS  Google Scholar 

  32. Das, R., S. Bee Abd Hamid, M. Eaqub Ali, S. Ramakrishna, and W. Yongzhi (2015) Carbon nanotubes characterization by X-ray powder diffraction–a review. Curr. Nanosci. 11: 23–35.

    Article  Google Scholar 

  33. Tan, H., W. Feng, and P. Ji (2012) Lipase immobilized on magnetic multi-walled carbon nanotubes. Bioresour. Technol. 115: 172–176.

    Article  CAS  PubMed  Google Scholar 

  34. Saleh, T. A. (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl. Surf. Sci. 257: 7746–7751.

    Article  CAS  Google Scholar 

  35. Ramezan zadeh, M. H., M. Seifi, H. Hekmatara, and M. B. Askari (2017) Preparation and study of the electrical, magnetic and thermal properties of Fe3O4 coated carbon nanotubes. Chin. J. Phys. 55: 1319–1328.

    Article  CAS  Google Scholar 

  36. Murugan, E., S. Arumugam, and P. Panneerselvam (2016) New nanohybrids from poly(propylene imine) dendrimer stabilized silver nanoparticles on multiwalled carbon nanotubes for effective catalytic and antimicrobial applications. Int. J. Polym. Mater. 65: 111–124.

    Article  CAS  Google Scholar 

  37. Che Marzuki, N. H., N. A. Mahat, F. Huyop, H. Y. Aboul-Enein, and R. A. Wahab (2015) Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food Bioprod. Process. 96: 211–220.

    Article  CAS  Google Scholar 

  38. Monazam, E. R., R. W. Breault, and R. Siriwardane (2014) Kinetics of magnetite (Fe3O4) oxidation to hematite (Fe2O3) in air for chemical looping combustion. Ind. Eng. Chem. Res. 53: 13320–13328.

    Article  CAS  Google Scholar 

  39. Ng, W. K., J. W. Kwek, A. Yuen, C. L. Tan, and R. Tan (2010) Effect of milling on DSC thermogram of excipient adipic acid. AAPS PharmSciTech 11: 159–167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jimeno, A., S. Goyanes, A. Eceiza, G. Kortaberria, I. Mondragon, and M. A. Corcuera (2009) Effects of amine molecular structure on carbon nanotubes functionalization. J. Nanosci. Nanotechnol. 9: 6222–6227.

    Article  CAS  PubMed  Google Scholar 

  41. Grabarek, Z. and J. Gergely (1990) Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185: 131–135.

    Article  CAS  PubMed  Google Scholar 

  42. Saifuddin, N., A. Z. Raziah, and A. R. Junizah (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J. Chem. 2013: 676815.

    Article  Google Scholar 

  43. Wang, C., Q. Yan, H.-B. Liu, X.-H. Zhou, and S.-J. Xiao (2011) Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir 27: 12058–12068.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, D.-S., S.-Y. Long, J. Huang, H.-Y. Xiao, and J.-Y. Zhou (2005) Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem. Eng. J. 25: 15–23.

    Article  Google Scholar 

  45. Aybastier, Ö. and C. Demir (2010) Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene-divinylbenzene copolymer using response surface methodology. J. Mol. Catal. B Enzym. 63: 170–178.

    Article  CAS  Google Scholar 

  46. Izrael Živković, L. T., L. S. Živković, B. M. Babić, M. J. Kokunešoski, B. M. Jokić, and I. M. Karadžić (2015) Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochem. Eng. J. 93: 73–83.

    Article  Google Scholar 

  47. Xie, W. and M. Huang (2020) Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel. Renew. Energy 158: 474–486.

    Article  CAS  Google Scholar 

  48. Jamil, N., R. Che Man, S. Suhaimi, S. Md Shaarani, Z. Iffah Mohd Arshad, S. Kholijah Abdul Mudalip, and S. Zubaidah Sulaiman (2018) Effect of enzyme concentration and temperature on the immobilization of cyclodextrin glucanotransferase (CGTase) on hollow fiber membrane. Mater. Today Proc. 5: 22036–22042.

    Article  CAS  Google Scholar 

  49. Cai, C., Y Gao, Y Liu, N. Zhong, and N. Liu (2016) Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Food Chem. 212: 205–212.

    Article  CAS  PubMed  Google Scholar 

  50. Paludo, N., J. S. Alves, C. Altmann, M. A. Z. Ayub, R. Fernandez-Lafuente, and R. C. Rodrigues (2015) The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrason. Sonochem. 22: 89–94.

    Article  CAS  PubMed  Google Scholar 

  51. Hari Krishna, S. and N. G. Karanth (2001) Lipase-catalyzed synthesis of isoamyl butyrate. A kinetic study. Biochim. Biophys. Acta 1547: 262–267.

    Article  CAS  PubMed  Google Scholar 

  52. Yadav, G. D. and P. S. Lathi (2004) Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies. J. Mol. Catal. B Enzym. 27: 113–119.

    Article  CAS  Google Scholar 

  53. Manan, F. M. A., I. N. A. Rahman, N. H. C. Marzuki, N. A. Mahat, F. Huyop, and R. A. Wahab (2016) Statistical modelling of eugenol benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Process Biochem. 51: 249–262.

    Article  CAS  Google Scholar 

  54. Pires-Cabral, P., M. M. R. da Fonseca, and S. Ferreira-Dias (2009) Synthesis of ethyl butyrate in organic media catalyzed by Candida rugosa lipase immobilized in polyurethane foams: a kinetic study. Biochem. Eng. J. 43: 327–332.

    Article  CAS  Google Scholar 

  55. Elias, N., S. Chandren, N. Attan, N. A. Mahat, F. I. A. Razak, J. Jamalis, and R. A. Wahab (2017) Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr. Polym. 176: 281–292.

    Article  CAS  PubMed  Google Scholar 

  56. Sabbani, S. and E. Hedenström (2009) Control of water activity in lipase catalysed esterification of chiral alkanoic acids. J. Mol. Catal. B Enzym. 58: 6–9.

    Article  CAS  Google Scholar 

  57. Torres, C. and C. Otero (1999) Part I. Enzymatic synthesis of lactate and glycolate esters of fatty alcohols. Enzyme Microb. Technol. 25: 745–752.

    Article  CAS  Google Scholar 

  58. Chandane, V. S., A. P. Rathod, and K. L. Wasewar (2016) Enhancement of esterification conversion using pervaporation membrane reactor. Resour. Effic. Technol. 2 Suppl 1: S47–S52.

    Article  Google Scholar 

  59. Won, K., J.-K. Hong, K.-J. Kim, and S.-J. Moon (2006) Lipase-catalyzed enantioselective esterification of racemic ibuprofen coupled with pervaporation. Process Biochem. 41: 264–269.

    Article  CAS  Google Scholar 

  60. Jeong, J. C. and S. B. Lee (1997) Enzymatic esterification reaction in organic media with continuous water stripping: effect of water content on reactor performance and enzyme agglomeration. Biotechnol. Tech. 11: 853–858.

    Article  CAS  Google Scholar 

  61. Ferreira Gonçalves, G. R., O. R. Ramos Gandolfi, M. J. P. Brito, R. C. F. Bonomo, R. da Costa Ilhéu Fontan, and C. M. Veloso (2021) Immobilization of porcine pancreatic lipase on activated carbon by adsorption and covalent bonding and its application in the synthesis of butyl butyrate. Process Biochem. 111: 114–123.

    Article  Google Scholar 

  62. Vrutika, P. and M. Datta (2015) Lipase from solvent-tolerant Pseudomonas sp. DMVR46 strain adsorb on multiwalled carbon nanotubes: application for enzymatic biotransformation in organic solvents. Appl. Biochem. Biotechnol. 177: 1313–1326.

    Article  CAS  PubMed  Google Scholar 

  63. Schwaminger, S. P., D. Bauer, P. Fraga-García, F. E. Wagner, and S. Berensmeier (2017) Oxidation of magnetite nanoparticles: impact on surface and crystal properties. CrystEngComm 19: 246–255.

    Article  CAS  Google Scholar 

  64. Muller, J., F. Huaux, and D. Lison (2006) Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon N. Y. 44: 1048–1056.

    Article  CAS  Google Scholar 

  65. Koyama, S., Y. A. Kim, T. Hayashi, K. Takeuchi, C. Fujii, N. Kuroiwa, H. Koyama, T. Tsukahara, and M. Endo (2009) In vivo immunological toxicity in mice of carbon nanotubes with impurities. Carbon N. Y. 47: 1365–1372.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ms. Parneet Kaur gratefully acknowledges Ministry of Human Resource Development (MHRD), Govt. of India for providing the fellowship during the study. All authors are highly thankful to Dr B R A National Institute of Technology (NIT), Jalandhar for administrative supports for the study.

Author information

Authors and Affiliations

Authors

Contributions

Parneet Kaur: Visualization, Investigation, Software, Data curation, Formal analysis, Writing - original draft. Asim Kumar Jana: Conceptualization, Project administration, Methodology, Supervision, Investigation, Writing - review & editing.

Corresponding author

Correspondence to Asim Kumar Jana.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Material

12257_2022_296_MOESM1_ESM.pdf

Candida rugosa Lipase Immobilization on Fe3O4 Coated Carboxyl Functionalised Multiwalled Carbon Nanotubes for Production of Food Flavour Esters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Jana, A.K. Candida rugosa Lipase Immobilization on Fe3O4 Coated Carboxyl Functionalised Multiwalled Carbon Nanotubes for Production of Food Flavour Esters. Biotechnol Bioproc E 28, 310–326 (2023). https://doi.org/10.1007/s12257-022-0296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0296-1

Keywords

Navigation