Skip to main content

Advertisement

Log in

Carbodiimide-mediated immobilization of serratiopeptidase on amino-, carboxyl-functionalized magnetic nanoparticles and characterization for target delivery

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A hybrid biomaterial of serratiopeptidase enzyme was prepared with magnetic nanoparticles (MNPs) via carboxyl and amino-functionalization and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) for direct immobilization. The average size of prepared MNPs was found to be 15.05 ± 3.06 nm. Attachment of amino and carboxyl groups was confirmed by Fourier transform infrared spectroscopy. X-ray diffraction confirmed the purity and phase integrity of Fe3O4. The MNPs and enzyme-loaded-MNPs (EMNPs) were of saturation magnetization 58 and 50 emu g−1, respectively. Thermogravimetric analysis of EDC-MNPs and EMNPs showed the presence of organic coating over MNPs. Serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles showed loss of enzyme activity due to crosslinking of enzyme, while serratiopeptidase immobilized on carboxyl-functionalized magnetic nanoparticles was better and gave 115.78 mg protein g−1 MNPs, enzyme loading 168.32 U g−1 MNPs at optimized MNPs-to-enzyme ratio 1.0 mg mg−1. In vitro and in vivo studies showed that EMNPs with magnetic targeting is more effective in drug permeation and reduction in edema than free enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Khateeb TH, Nusair Y (2008) Effect of the proteolytic enzyme serrapeptase on swelling, pain and trismus after surgical extraction of mandibular third molars. Int J Oral Maxillofac Surg 37(3):264–268

    Article  Google Scholar 

  • Bi F, Zhang J, Su Y, Tang YC, Liu JN (2009) Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 30(28):5125–5130

    Article  Google Scholar 

  • Cao H, He J, Deng L, Gao X (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core-shell nanoparticles via layer-by-layer method. Appl Surf Sci 255(18):7974–7980

    Article  Google Scholar 

  • Chen Y, Zhang Y (2011) Fluorescent quantification of amino groups on silica nanoparticle surfaces. Anal Bioanal Chem 399(7):2503–2509

    Article  Google Scholar 

  • Chen JP, Yang PC, Ma YH, Wu T (2011) Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr Polym 84:364–372

    Article  Google Scholar 

  • Chen J-P, Yang P-C, Ma Y-H, Tu S-J, Lu Y-J (2012) Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle. Int J Nanomedicine 7:5137–5149

    Article  Google Scholar 

  • Cheon YH, Kim GJ, Kim HS (2000) Stabilization of d-hydantoinase by intersubunit cross-linking. J Mol Catal B Enzym 11(1):29–35

    Article  Google Scholar 

  • Chertok B, David AE, Yang VC (2011) Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. J Control Release 155(3):393–399

    Article  Google Scholar 

  • Dandamudi S, Campbell RB (2007) The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials 28(31):4673–4683

    Article  Google Scholar 

  • El-Shafey A, Tolic N, Young MM, Sale K, Smith RD, Kery V (2006) “Zero-length” cross-linking in solid state as an approach for analysis of protein–protein interactions. Protein Sci 15(3):429–440

    Article  Google Scholar 

  • Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization and applications. J Iran Chem Soc 7(1):1–37

    Article  Google Scholar 

  • Food Chemical Codex Ve (2003) Institute of Health. National Academy of Science, Washington, DC, 2001:923–924

  • Gao F, Yan Z, Zhou J, Cai Y, Tang J (2012) Methotrexate-conjugated magnetic nanoparticles for thermochemotherapy and magnetic resonance imaging of tumor. J Nano Res 14(10):1–10

    Google Scholar 

  • Hong R-Y, Li J-H, Zhang S-Z, Li H-Z, Zheng Y, Ding J-m, Wei D-G (2009) Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids. Appl Surf Sci 255(6):3485–3492

    Article  Google Scholar 

  • Hsieh H-J, Liu P-C, Liao W-J (2000) Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol Lett 22(18):1459–1464

    Article  Google Scholar 

  • Hu F, Neoh KG, Cen L, Kang E-T (2006) Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules 7(3):809–816

    Article  Google Scholar 

  • Hu B, Pan J, Yu H-L, Liu J-W, Xu J-H (2009) Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem 44(9):1019–1024

    Article  Google Scholar 

  • Huang G-J, Pan C-H, Liu F-C, Wu T-S, Wu C-H (2012) Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246.7 macrophages and the λ-carrageenan-induced paw edema model. Food Chem Toxicol 50(5):1485–1493

    Article  Google Scholar 

  • Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. J Mol Catal B Enzym 58:103–109

    Article  Google Scholar 

  • Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2011) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123(2):707–716

    Article  Google Scholar 

  • Kee W, Tan S, Lee V, Salmon Y (1989) The treatment of breast engorgement with Serrapeptase (Danzen): a randomised double-blind controlled trial. Singapore Med J 30(1):48–54

    Google Scholar 

  • Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3:http://www.jnanobiotechnology.com/content/3/1/1

  • Krukemeyer MG, Krenn V, Jakobs M, Wagner W (2012) Magnetic drug targeting in a rhabdomyosarcoma rat model using magnetite-dextran composite nanoparticle-bound mitoxantrone and 0.6 tesla extracorporeal magnets sarcoma treatment in progress. J Drug Target 20(2):185–193

    Article  Google Scholar 

  • Kumar R, Inbaraj BS, Chen BH (2010a) Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(γ-glutamic acid) as coating material. Mater Res Bull 45(11):1603–1607

    Article  Google Scholar 

  • Kumar S, Mohan U, Kamble AL, Pawar S, Banerjee UC (2010b) Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis. Bioresour Technol 101(17):6856–6858

    Article  Google Scholar 

  • Kumar S, Jana AK, Dhamija I, Maiti M (2013a) Chitosan assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its targeted delivery in vitro and in vivo. J Drug Target. doi:10.3109/1061186X.1062013.1844157

  • Kumar S, Jana AK, Dhamija I, Singla Y, Maiti M (2013b) Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. Eur J Pharm Biopharm. doi:10.1016/j.ejpb.2013.1006.1019

  • Kv S, Devi GS, Mathew ST (2007) Liposomal formulations of serratiopeptidase: in vitro studies using PAMPA and caco-2 models. Mol Pharm 5(1):92–97

    Article  Google Scholar 

  • Li B, Ma Y, Wang S, Moran PM (2005) A technique for preparing protein gradients on polymeric surfaces: effects on PC12 pheochromocytoma cells. Biomaterials 26(13):1487–1495

    Article  Google Scholar 

  • Li G-y, Jiang Y-r, Huang K-l, Ding P, Chen J (2008) Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. J Alloys Compd 466:451–456

    Article  Google Scholar 

  • Liang Y–Y, Zhang L-M (2007) Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. Biomacromolecules 8(5):1480–1486

    Article  Google Scholar 

  • Liang Y–Y, Zhang L-M, Li W, Chen R-F (2007) Polysaccharide-modified iron oxide nanoparticles as an effective magnetic affinity adsorbent for bovine serum albumin. Colloid Polym Sci 285(11):1193–1199

    Article  Google Scholar 

  • Lin Y, Wei Y, Sun Y, Wang J (2012) Synthesis and magnetic characterization of magnetite obtained by monowavelength visible light irradiation. Mater Res Bull 47(3):614–618

    Article  Google Scholar 

  • Longhi C, Scoarughi GL, Poggiali F, Cellini A, Carpentieri A, Seganti L, Pucci P, Amoresano A, Cocconcelli PS, Artini M, Costerton JW, Selan L (2008) Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb Pathog 45(1):45–52

    Article  Google Scholar 

  • Lopez RFV, Collett JH, Bentley MVLB (2000) Influence of cyclodextrin complexation on the in vitro permeation and skin metabolism of dexamethasone. Int J Pharm 200(1):127–132

    Article  Google Scholar 

  • Mahato RI, Narang AS, Thoma L, Miller DD (2003) Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 20:153–214

    Article  Google Scholar 

  • Maheshwari M, Miglani G, Mali A, Paradkar A, Yamamura S, Kadam S (2006) Development of tetracycline-serratiopeptidase-containing periodontal gel: formulation and preliminary clinical study. AAPS PharmSciTech 7(3):E162–E171

    Article  Google Scholar 

  • Majumder AB, Mondal K, Singh TP, Gupta MN (2008) Designing cross-linked lipase aggregates for optimum performance as biocatalysts. Biocatal Biotransform 26(3):235–242

    Article  Google Scholar 

  • Marroquin-Segura R, Flores-Pimentel M, Carreon-Sanchez R, Garcia-Burciaga MM, Mora-Guevara JLA, Aguilar-Contreras A, Hernandez-Abad VJ (2009) The effect of the aqueous extract of Helietta parvifolia A. Gray (Rutaceae) stem bark on carrageenan-induced paw oedema and granuloma tissue formation in mice. J Ethnopharmacol 124(3):639–641

    Article  Google Scholar 

  • Maximov V, Reukov V, Vertegel AA (2009) Targeted delivery of therapeutic enzymes. J Drug Deliv Sci Tech 19(5):311–320

    Google Scholar 

  • Mazzone A, Catalan M, Costanzo M (1990) Evaluation of serratiopeptidase in acute or chronic inflammation of otorhinolaryngology pathology: a multicentre, double blind, randomized trial versus placebo. J Int Med Res 18:379–388

    Google Scholar 

  • Nakamura S, Hashimoto Y, Mikami M, Yamanaka E, Soma T, Hino M, Azuma A, Kudoh S (2003) Effect of the proteolytic enzyme serrapeptase in patients with chronic airway disease. Respirology 8(3):316–320

    Article  Google Scholar 

  • Namdeo M, Bajpai SK (2009) Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal B Enzym 59:134–139

    Article  Google Scholar 

  • Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mater 323(2):237–243

    Article  Google Scholar 

  • Novak L, Banyai I, Fleischer-Radu JE, Borbely J (2007) Direct amidation of poly (γ-glutamic acid) with benzylamine in dimethyl sulfoxide. Biomacromolecules 8(5):1624–1632

    Article  Google Scholar 

  • Nowicka AM, Kowalczyk A, Jarzebinska A, Donten M, Krysinski P, Stojek Z, Augustin E, Mazerska Z (2013) Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate. Biomacromolecules. doi:10.1021/bm301868f

  • Panagariya A, Sharma A (1999) A preliminary trial of serratiopeptidase in patients with carpal tunnel Syndrome. J Assoc Physicians India 47(12):1170–1172

    Google Scholar 

  • Pecova M, Sebela M, Markova Z, PolAkova K, Cuda J, Safarova K, Zboril R (2013) Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology 24(12):125102

    Article  Google Scholar 

  • Peppas N (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60(4):110–111

    Google Scholar 

  • Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68(1):129–137

    Article  Google Scholar 

  • Rath G, Johal ES, Goyal AK (2011) Development of Serratiopeptidase and Metronidazole Based Alginate Microspheres for Wound Healing. Artif Cells Blood Substit Immobil Biotechnol 39(1):44–50

    Article  Google Scholar 

  • Ren L, Wang X, Wu H, Shang B, Wang J (2010) Conjugation of nattokinase and lumbrukinase with magnetic nanoparticles for the assay of their thrombolytic activities. J Mol Catal B Enzym 62(2):190–196

    Article  Google Scholar 

  • Sadeghi H, Hajhashemi V, Minaiyan M, Movahedian A, Talebi A (2011) A study on the mechanisms involving the anti-inflammatory effect of amitriptyline in carrageenan-induced paw edema in rats. Eur J Pharmacol 667:396–401

    Article  Google Scholar 

  • Shaw S-Y, Chen Y-J, Ou J–J, Ho L (2006) Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzyme Microb Technol 39:1089–1095

    Article  Google Scholar 

  • ShiXing W, Sun W, Zhou Y (2010) Preparation of Cu2+/NTA-derivatized branch polyglycerol magnetic nanoparticles for protein adsorption. J Nano Res 12(7):2467–2472

    Article  Google Scholar 

  • Shubayev VI, Pisanic Ii TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61(6):467–477

    Article  Google Scholar 

  • Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157

    Article  Google Scholar 

  • Tang T, Fan H, Ai S, Han R, Qiu Y (2011) Hemoglobin (Hb) immobilized on amino-modified magnetic nanoparticles for the catalytic removal of bisphenol A. Chemosphere 83(3):255–264

    Article  Google Scholar 

  • Verma M, Barrow C, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97(1):23–39

    Article  Google Scholar 

  • Vichasilp C, Nakagawa K, Sookwong P, Higuchi O, Kimura F, Miyazawa T (2012) A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chem 134(4):1823–1830

    Article  Google Scholar 

  • Wang N, Guan Y, Yang L, Jia L, Wei X, Liu H, Guo C (2013) Magnetic nanoparticles (MNPs) covalently coated by PEO-PPO-PEO block copolymer for drug delivery. J Colloid Interface Sci 395:50–57

    Article  Google Scholar 

  • Xu H, Song T, Bao X, Hu L (2005) Site-directed research of magnetic nanoparticles in magnetic drug targeting. J Magn Magn Mater 293(1):514–519

    Article  Google Scholar 

  • Yu C–C, Kuo Y–Y, Liang C-F, Chien W-T, Wu H-T, Chang T-C, Jan F-D, Lin C–C (2012) Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjug Chem 13(4):714–724

    Article  Google Scholar 

  • Zheng Z-H, Wei Y-Q, Yan S-Q, Li M-Z (2009) Preparation of porous silk fibroin materials cross-linked by carbodiimide (EDC). J Fib Bioeng Inform 2(3):162–167

    Google Scholar 

  • Zhu H, Pan J, Hu B, Yu H-L, Xu J-H (2009) Immobilization of glycolate oxidase from Medicago falcata on magnetic nanoparticles for application in biosynthesis of glyoxylic acid. J Mol Catal B Enzym 61:174–179

    Article  Google Scholar 

  • Zhuo Y, Yuan P-X, Yuan R, Chai Y-Q, Hong C-L (2009) Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30(12):2284–2290

    Article  Google Scholar 

  • Ziv-Polat O, Topaz M, Brosh T, Margel S (2010) Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 31(4):741–747

    Article  Google Scholar 

Download references

Acknowledgments

Mr. Sandeep Kumar gratefully acknowledges Ministry of Human Resource Development (MHRD), Govt. of India for providing the fellowship during the study. All authors are highly thankful to Advanced Enzyme Technologies Ltd, Mumbai, for providing the enzyme serratiopeptidase. All authors are thankful for helping in the analysis of the different samples to Sophisticated Analytical Instrumentation Facility (TEM, FTIR), Punjab University, Chandigarh; Central Research Facility (SEM–EDS), Indian Institute of Technology, Ropar; Institute Instrumentation Center (AFM, VSM), Indian Institute of Technology, Roorkee. All authors are highly thankful to Prof. Samir Kumar Das, Director, National Institute of Technology (NIT), Jalandhar, for providing all grants for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K. Jana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Jana, A.K., Maiti, M. et al. Carbodiimide-mediated immobilization of serratiopeptidase on amino-, carboxyl-functionalized magnetic nanoparticles and characterization for target delivery. J Nanopart Res 16, 2233 (2014). https://doi.org/10.1007/s11051-013-2233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2233-x

Keywords

Navigation