Skip to main content
Log in

Lipase from Solvent-Tolerant Pseudomonas sp. DMVR46 Strain Adsorb on Multiwalled Carbon Nanotubes: Application for Enzymatic Biotransformation in Organic Solvents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilization of biocatalysts onto particulate carriers has been widely explored for recycling of biocatalyst. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work was to elucidate the importance of nanoimmobilization system in organic synthesis. The surface of multiwalled carbon nanotubes (MWCNTs) was functionalized with a mixture of concentrated acids to create an interface for enzyme immobilization. Successful functionalization and enzyme immobilization was structurally evidenced by transmision electron microscopy analysis and Fourier-transform infrared spectroscopy analysis. Furthermore, immobilized enzyme was exploited for the synthesis of flavoured ester ethyl butyrate in the presence of n-heptane. Optimized conditions for enhanced ester synthesis was found to be 8.5 pH, 40 °C, 150 rpm, 0.15:0.2 M substrate molar ratio (ethanol/butyric acid) and n-heptane as reaction medium. Utmost 81 % of ester synthesis was obtained using immobilized lipase quite higher in comparison to that of free lipase. The activation energy indicated a lower energy requirement for immobilization of lipase on the surface of functionalized MWCNTs. In summary, immobilization of lipase on functionalized MWCNTs by simple adsorption method displayed excellent properties for enzyme stability and reusability, indicating its potential for application in organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Madamwar, D., & Dave, R. (2005). Lipase mediated catalysis in water restricted microenvironment under microemulsion based organogels. Chemica Oggi, 23(5), 16.

    Google Scholar 

  2. Soni, K., Shah, C., & Madamwar, D. (2000). Role of surfactant on activity of acid phosphatase incorporated in reverse micelles. Biocatalysis and Biotransformation, 18(5), 331–341.

    Article  CAS  Google Scholar 

  3. Jaeger, K. E., & Egger, T. (2002). Lipase for biotechnology. Current Opinion in Biotechnology, 13, 390–397.

    Article  CAS  Google Scholar 

  4. Lozano, P. (2010). Enzymes in neoteric solvents: from one phase to multiphase systems. Green Chemistry, 12, 555–569.

    Article  CAS  Google Scholar 

  5. Ribeiro, D. S., Henrique, S. M. B., Oliveria, L. S., Macedo, G. A., & Fleuri, L. F. (2010). Enzymes in juice processing: a review. International Journal of Food Science and Technology, 4, 635–641.

    Article  Google Scholar 

  6. Verma, M. L., Barrow, C. J., & Puri, M. (2013). Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilization with potential applications in biodiesel production. Applied Microbiology and Biotechnology, 97, 23–39.

    Article  CAS  Google Scholar 

  7. Raghavendra, T., Vohra, U., Shah, A. R., & Madamwar, D. (2014). Enhanced conjugation of Canida rugosa lipase onto multiwalled carbon nanotubes using reverse micelles as attachment medium and application in non-aqueous biocatalysis. Biotechnology. Progress, 30, 828–836.

    Article  CAS  Google Scholar 

  8. Lv, Y., Lin, Z., Tan, T., & Svec, F. (2014). Preparation of reusable bioreactors using reversible immobilization of enzyme of monolithic porous polymer support with attached gold nanoparticles. Biotechnology and Bioengineering, 111, 50–58.

    Article  CAS  Google Scholar 

  9. Klibanov, A. M. (1983). Immobilized enzymes and cells as practical catalysts. Science, 219, 722–727.

    Article  CAS  Google Scholar 

  10. Garcia-Galan, C., Berenguer-Múrcia, A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2001). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353, 2885–2904.

    Article  Google Scholar 

  11. Rodrigues, R. C., Ortiz, C., Berenguer-Múrcia, A., Torres, R., & Fernandez-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42, 6290–6307.

    Article  CAS  Google Scholar 

  12. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  13. Gupta, M. N., Kaloti, M., Kapoor, M., & Solanki, K. (2011). Nanomaterials as matrices for enzyme immobilization. Artificial Cells Blood Substitute Biotechnology, 39, 98–109.

    Article  CAS  Google Scholar 

  14. Singh, C., Shaffer, M., Koziol, K., Kinloch, I., & Windle, A. (2003). Towards the production of large scale aligned carbon nanotubes. Chemical Physics Letters, 372, 860–865.

    Article  CAS  Google Scholar 

  15. Jia, G., Wang, H., Yan, L., Wang, X., Pie, R., Yan, T., et al. (2005). Towards the production of large scale aligned carbon nanotubes. Environmental Science and Technology, 39, 1378–1383.

    Article  CAS  Google Scholar 

  16. Shi, J., Cjaussen, J. C., McLamore, E. S., Haquel, A., Jaroch, D., Diggs, A. R., et al. (2011). A comparative study of enzyme immobilization strategies for multiwalled carbon nanotube glucose biosensors. Nanotechnology, 22, 355502.

    Article  Google Scholar 

  17. Patel, V., Nambiar, S., & Madamwar, D. (2014). An extracellular solvent stable alkaline lipase from Pseudomonas sp DMVR46: partial purification, characterization and application in non-aqueous environment. Process Biochemistry, 49, 1673–1681.

    Article  CAS  Google Scholar 

  18. Cao, Y., Zhuang, Y., Yao, C., Wu, B., & He, B. (2012). Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R, S)-1-phenylethanol. Biochemical Engineering, 64, 55–60.

    Article  CAS  Google Scholar 

  19. Dandvate, V., Jinjala, J., Keharia, H., & Madamwar, D. (2009). Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresource Technology, 100, 3374–3381.

    Article  Google Scholar 

  20. Winkler, U. K., & Stuckmann, M. (1979). Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal Bacteriology, 138, 663–670.

    CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  22. Ma, P. C., Kim, J. K., & Tang, B. Z. (2006). Functionalization of carbon nanotubes using a silane coupling agent. Carbon, 44, 3232–3238.

    Article  CAS  Google Scholar 

  23. Rastian, Z., Khodadadi, A., Vahabzdeh, F., Bortilini, C., Docg, M., Mortazavi, Y., Mogharei, A., Naseh, M., & Guo, Z. (2014). Facile surface fuctionalization of multiwalled carbon nanotubes by soft dielectric barrier discharge plasma: general composite interface for lipase immobilization. Biochemical Engineering Journal, 90, 720–726.

    Article  Google Scholar 

  24. Teng, L. H. (2008). IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers. Journal of Zhejiang University Science A, 9, 720–726.

    Article  CAS  Google Scholar 

  25. Isabel, H., Vanessa, D., Silva, G., & Nascimento, M. (2011). Enantioselective resolution of (R, S)-1-phenylethanol catalyzed by lipases immobilized in starch films. Journal of the Brazilian Chemical Society, 22, 1559–1567.

    Article  Google Scholar 

  26. Badgujar, K. C., & Bhanage, B. M. (2014). Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: kinetic modelling and chain length effect study. Process Biochemistry, 49, 1304–1313.

    Article  CAS  Google Scholar 

  27. Dhake, K. P., Tambade, P. J., Qureshi, Z. S., Singhal, R. S., & Bhanage, B. M. (2011). HPMC-PVA filmimmobilized Rhizopus oryzae lipase as a biocatalyst for transesterification reaction. ACS Catalysis, 1, 316–322.

    Article  CAS  Google Scholar 

  28. Lee, S. C., & Mohamad, R. S. (2006). Effect of solvent and initial water content on (R, S)-1-phenylethanol resolution. Enzyme and Microbial Technology, 38, 551–556.

    Article  CAS  Google Scholar 

  29. de Ligia, A., Roberto, F. L., Rafael, C. R., Giandra, V., & Marco, A. Z. A. (2014). Efficient purification-immobilization of an organic solvent-tolerant lipase from Staphylococcus warneri EX17 on porous styrene-divinylbenzene beads. Journal of Molecular Catalysis B: Enzymatic, 99, 51–55.

    Article  Google Scholar 

  30. Hun, C., Rahman, R., Salleh, A., & Basri, M. A. (2003). Newly isolated organic solvents tolerant Bacillus sphaericus 205y producing organic solvent stable lipase. Biochemical Engineering Journal, 15, 147–151.

    Article  CAS  Google Scholar 

  31. Patel, V., Gajera, H., Gupta, A., Manocha, L., & Madamwar, D. (2015). Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: process parameters and reusability studies. Biochemical Engineering Journal, 95, 62–70.

    Article  CAS  Google Scholar 

  32. Doshanj, N. S., & Kaur, J. (2002). Immobilization stability and esterification studies of a lipase from a Bacillus sp. Biotechnology and Applied Biochemistry, 36, 7–12.

    Article  Google Scholar 

  33. Devendran, S., & Yadav, G. (2014). Lipase-catalyzed kinetic resolution of (±)-1-(2-furyl) ethanol in nonaqueous media. Chirality, 26, 286–292.

    Article  CAS  Google Scholar 

  34. Yadav, G. D., & Pawar, S. V. (2012). Synergism between microwave irradiadition and enzyme catalysis in transesterification of ethyl-3-phenylpropanoate with n-butanol. Bioresource Technology, 109, 1–6.

    Article  CAS  Google Scholar 

  35. Yadav, G. D., & Borkar, I. V. (2008). Kinetic modelling of immobilized lipase catalysis in synthesis of n-butyl levulinate. Industrial and Engineering Chemistry Research, 47, 3358–3363.

    Article  CAS  Google Scholar 

  36. Bayromoglu, G., Karagoz, B., Allintas, B., Arica, M. Y., & Bicak, N. (2011). Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess and Biosystems Engineering, 34, 735–746.

    Article  Google Scholar 

  37. Lorenzoni, A. S., Graebin, N. G., Martins, A. B., Fernandez-Lafuente, R., Ayub, M. A. Z., & Rodrigues, R. C. (2012). Optimization of pineapple flavor synthesis by esterification catalyzed by immobilized lipase from Rhizomucor miehie. Flavour and Fragrance Journal, 27, 196–200.

    Article  CAS  Google Scholar 

  38. Zhang, D. H., Zhang, Y. F., Zhi, G. Y., & Xie, Y. L. (2011). Effect of hydrophobic/hydrophilic characteristics of magnetic microspheres on the immobilization of BSA. Colloids and Surfaces B: Biointerfaces, 82, 302–306.

    Article  CAS  Google Scholar 

  39. Boncel, S., Zniszczol, A., Szymansha, K., Bailon, J. M., Jarzebski, A., & Walczak, K. Z. (2013). Alkaline lipase from Pseudomonas fluorescens non-covalently immobilized on pristine verses oxidized multiwall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of solketal esters. Enzyme and Microbial Technology, 53, 263–270.

    Article  CAS  Google Scholar 

  40. Raghavendra, T., Basak, A., Manocha, L., Shah, A., & Madamwar, D. (2013). Robust nanobioconjugates of Candida antarctica lipase B-multiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis. Bioresource Technology, 140, 103–110.

    Article  CAS  Google Scholar 

  41. Dandavate, V., & Madamwar, D. (2007). Novel approach for the synthesis of ethyl isovalerate using surfactant coated Candida rugosa lipase immobilized in microemulsion based organogels. Enzyme and Microbial Technology, 41, 265–270.

    Article  CAS  Google Scholar 

  42. Lee, D. G., Ponve, K. M., Kim, M., Hwang, S., Ahn, I. S., & Lee, C. H. (2009). Immobilization of lipase on hydrophobic nano-sized magnetic particles. Journal of Molecular Catalysis B: Enzymatic, 57, 62–66.

    Article  CAS  Google Scholar 

  43. Zou, B., Hu, Y., Yu, D., Xia, J., Tang, S., Liv, W., & Huang, H. (2010). Immobilization of porcine pancreatic lipase onto ionic liquid modified mesoporous silica SBA-15. Biochemical Engineering Journal, 53, 150–153.

    Article  CAS  Google Scholar 

  44. Abdullah, A. Z., Sukaimann, N. S., & Kamaruddin, A. H. (2009). Biocatalytic esterification of citronellol with lauric acid by immobilized lipase on aminopropyl-grafter mesoporous SBA-15. Biochemical Engineering Journal, 44, 263–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge University Grants Commission (UGC) grant no. F. 42-167/2013 (SR), New Delhi, for financial support. The authors would also like to acknowledge SICART, Vallabh Vidhyanagar, for FTIR and TEM facility and Department of Material Sciences, Vallabh Vidhyanagar, for providing MWCNTs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madamwar Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrutika, P., Datta, M. Lipase from Solvent-Tolerant Pseudomonas sp. DMVR46 Strain Adsorb on Multiwalled Carbon Nanotubes: Application for Enzymatic Biotransformation in Organic Solvents. Appl Biochem Biotechnol 177, 1313–1326 (2015). https://doi.org/10.1007/s12010-015-1816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1816-7

Keywords

Navigation