Skip to main content
Log in

Selective Extraction of Chlorophyll a/Photosystem Polypeptides from Spirulina maxima Using Aqueous Two Phase Extraction

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Spirulina, a photosynthetic cyanobacteria, has bioactive molecules such as phycobiliproteins which are useful in bioindustries. Aqueous two-phase extraction, an industrially effective process, have been applied to extract invaluable molecules from Spirulina, but mainly focused on optimal extraction of C-Phycocyanin. This research is to selectively remove chlorophyll a-pertaining photosystem polypeptides by stably forming interfacial layer between two phases of polyethylene glycol/potassium phosphate. Under an optimal condition of aqueous two-phase extraction, a stable interfacial layer was formed, while preserving purification efficiency of C-Phycocyanin. Through UV, fluorescence, and gel electrophoresis, chlorophyll a-pertaining photosystem polypeptides were ascertained to be extracted in the interfacial layer. C-Phycocyanin was mainly present in the top phase and allophycocyanin was in the bottom phase. In addition, the safety of the purified C-Phycocyanin was confirmed by examining cytotoxicity of C-Phycocyanin. In conclusion, a stable formation of interfacial layer was proved to be helpful in understanding the selective extraction of chlorophyll a-pertaining photosystem polypeptides, and the purified C-Phycocyanin can be used without cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padyana, A. K., V. B. Bhat, K. M. Madyastha, K. R. Rajashankar, and S. Ramakumar (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem. Biophys. Res. Commun. 282: 893–898.

    Article  CAS  Google Scholar 

  2. Romay, C., J. Armesto, D. Remirez, R. González, N. Ledon, and I. García (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 47: 36–41.

    Article  CAS  Google Scholar 

  3. Trotta, T., C. Porro, A. Cianciulli, and M. A. Panaro (2022) Beneficial effects of Spirulina consumption on brain health. Nutrients 14: 676.

    Article  CAS  Google Scholar 

  4. Prabakaran, G., P. Sampathkumar, M. Kavisri, and M. Moovendhan (2020) Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int. J. Biol. Macromol. 153: 256–263.

    Article  CAS  Google Scholar 

  5. Carbone, D. A., P. Pellone, C. Lubritto, and C. Ciniglia (2021) Evaluation of microalgae antiviral activity and their bioactive compounds. Antibiotics (Basel) 10: 746.

    Article  CAS  Google Scholar 

  6. Jang, J. Y., B. M. Lee, S. Y. Jun, Y. J. Yang, and H. S. Shin (2022) Attenuation of psoriasis symptoms following treatment with C-phycocyanin from Spirulina Maxima in a mouse model. Biotechnol. Bioprocess Eng. 27: 407–414.

    Article  CAS  Google Scholar 

  7. Adli, S. A., F. Ali, A. S. Azmi, H. Anuar, N. A. M. Nasir, R. Hasham, and M. K. H. Idris (2020) Development of biodegradable cosmetic patch using a polylactic acid/phycocyanin-alginate composite. Polymers (Basel) 12: 1669.

    Article  CAS  Google Scholar 

  8. Kuddus, M., P. Singh, G. Thomas, and A. Al-Hazimi (2013) Recent developments in production and biotechnological applications of C-phycocyanin. Biomed Res. Int. 2013: 742859.

    Article  CAS  Google Scholar 

  9. Kumar, D., D. W. Dhar, S. Pabbi, N. Kumar, and S. Walia (2014) Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J. Plant Physiol. 19: 184–188.

    Article  Google Scholar 

  10. Ramos, A., F. G. Acién, J. M. Fernández-Sevilla, C. V. González, and R. Bermejo (2011) Development of a process for large-scale purification of C-phycocyanin from Synechocystis aquatilis using expanded bed adsorption chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879: 511–519.

    Article  CAS  Google Scholar 

  11. Patil, G., S. Chethana, A. S. Sridevi, and K. S. Raghavarao (2006) Method to obtain C-phycocyanin of high purity. J. Chromatogr. A 1127: 76–81.

    Article  CAS  Google Scholar 

  12. Dreyer, S. and U. Kragl (2008) Ionic liquids for aqueous two-phase extraction and stabilization of enzymes. Biotechnol. Bioeng. 99: 1416–1424.

    Article  CAS  Google Scholar 

  13. Luechau, F., T. C. Ling, and A. Lyddiatt (2009) Primary capture of high molecular weight nucleic acids using aqueous two-phase systems. Sep. Purif. Technol. 66: 202–207.

    Article  CAS  Google Scholar 

  14. Iqbal, M., Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M. A. B. Shabbir, H. I. Hussain, S. Ahmed, and Z. Yuan (2016) Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol. Proced. Online 18: 18.

    Article  Google Scholar 

  15. Patil, G. and K. S. M. S. Raghavarao (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem. Eng. J. 34: 156–164.

    Article  CAS  Google Scholar 

  16. Chethana, S., C. A. Nayak, M. C. Madhusudhan, and K. S. Raghavarao (2015) Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. J. Food Sci. Technol. 52: 2415–2421.

    Article  CAS  Google Scholar 

  17. Wang, F., Y.-H. Liu, Y. Ma, Z.-G. Cui, and L.-L. Shao (2017) Application of TMA-PEG to promote C-phycocyanin extraction from S. platensis in the PEG ATPS. Process Biochem. 52: 283–294.

    Article  CAS  Google Scholar 

  18. Rito-Palomares, M., L. Nuñez, and D. Amador (2001) Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. J. Chem. Technol. Biotechnol. 76: 1273–1280.

    Article  CAS  Google Scholar 

  19. Antelo, F. S., J. A. V. Costa, and S. J. Kalil (2015) Purification of C-phycocyanin from Spirulina platensis in aqueous two-phase systems using an experimental design. Braz. Arch. Biol. Technol. 58: 1–11.

    Article  CAS  Google Scholar 

  20. Chew, B. P. (1993) Role of carotenoids in the immune response. J. Dairy Sci. 76: 2804–2811.

    Article  CAS  Google Scholar 

  21. Suarez Ruiz, C. A., D. P. Emmery, R. H. Wijffels, M. H. Eppink, and C. van den Berg (2018) Selective and mild fractionation of microalgal proteins and pigments using aqueous two-phase systems. J. Chem. Technol. Biotechnol. 93: 2774–2783.

    Article  CAS  Google Scholar 

  22. Narayan, A. V., M. C. Madhusudhan, and K. S. M. S. Raghavarao (2011) Demixing kinetics of phase systems employed for liquid-liquid extraction and correlation with system properties. Food Bioprod. Process. 89: 251–256.

    Article  CAS  Google Scholar 

  23. Asenjo, J. A. and B. A. Andrews (2011) Aqueous two-phase systems for protein separation: a perspective. J. Chromatogr. A 1218: 8826–8835.

    Article  CAS  Google Scholar 

  24. Bennett, A. and L. Bogorad (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58: 419–435.

    Article  CAS  Google Scholar 

  25. Lichtenthaler, H. K. and C. Buschmann (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 1: F4.3.1–F4.3.8.

    Article  Google Scholar 

  26. Henderson, J. N., J. Zhang, B. W. Evans, and K. Redding (2003) Disassembly and degradation of photosystem I in an in vitro system are multievent, metal-dependent processes. J. Biol. Chem. 278: 39978–39986.

    Article  CAS  Google Scholar 

  27. Yu, D., G. Huang, F. Xu, M. Wang, S. Liu, and F. Huang (2014) Triton X-100 as an effective surfactant for the isolation and purification of photosystem I from Arthrospira platensis. Photosynth. Res. 120: 311–321.

    Article  CAS  Google Scholar 

  28. Minkova, K., M. Tchorbadjieva, A. Tchernov, M. Stojanova, L. Gigova, and M. Busheva (2007) Improved procedure for separation and purification of Arthronema africanum phycobiliproteins. Biotechnol. Lett. 29: 647–651.

    Article  CAS  Google Scholar 

  29. Lamb, J. J., G. Røkke, and M. F. Hohmann-Marriott (2018) Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica 56: 105–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20220380), and also by the Ministry of Trade, Industry & Energy(MOTIE), Korea, under the “Regional Cooperation Innovative Growth R&D Program(R&D, P0021579)” supervised by the Korea Institute for Advancement of Technology(KIAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Sung Shin.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y.J., Lee, B.M., Baek, Y. et al. Selective Extraction of Chlorophyll a/Photosystem Polypeptides from Spirulina maxima Using Aqueous Two Phase Extraction. Biotechnol Bioproc E 27, 1014–1021 (2022). https://doi.org/10.1007/s12257-022-0098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0098-5

Keywords

Navigation