Skip to main content
Log in

Hydrogen Production from Methane by Methylomonas sp. DH-1 under Micro-aerobic Conditions

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Fueled by the recognition of hydrogen as a promising renewable energy source for the future, there have been many attempts to find greener and more economical ways for its production from various sources. In this study, Methylomonas sp. DH-1, a type I methanotroph, was found to produce hydrogen using methane as a sole carbon source, under micro-aerobic conditions; this is analogous to the partial oxidation of methane in a thermochemical process based on metal catalysts. Flask cultures of Methylomonas sp. DH-1 were used to investigate the effects of different culture conditions on hydrogen production, including oxygen levels, methane/oxygen ratios, and initial cell densities. Methylomonas sp. DH-1 could produce hydrogen at an oxygen level below 4%, regardless of the methane content in the flask, implying that the critical factor for hydrogen production is the oxygen level, rather than the methane/oxygen ratio. Moreover, Methylomonas sp. DH-1 shows reversibility in hydrogen production and uptake, because the strain produces hydrogen under micro-aerobic conditions, uptakes it when the oxygen levels increase, and restores the hydrogen production capability when conditions become microaerobic again. Under initial conditions of 30% methane, 70% air, and an OD600nm of 6, hydrogen production was 26.87 μmol and its yields per methane and dry cell weight were 14.98 mmol-H2/mol-CH4 and 101.53 μmol-H2/g DCW, respectively, after 24 h of cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ergal, İ., W. Fuchs, B. Hasibar, B. Thallinger, G. Bochmann, and S. K. M. R. Rittmann (2018) The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol. Adv. 36: 2165–2186.

    Article  CAS  Google Scholar 

  2. Maintinguer, S. I., C. Z. Lazaro, R. Pachiega, M. B. A. Varesche, R. Sequinel, and J. E. de Oliveira (2017) Hydrogen bioproduction with Enterobacter sp. isolated from brewery wastewater. Int. J. Hydrog. Energy. 42: 152–160.

    Article  CAS  Google Scholar 

  3. Kim, M. S., H. H. Kim, K. M. Lee, H. J. Lee, and C. Lee (2017) Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide. Water Res. 114: 277–3.

    Article  CAS  Google Scholar 

  4. Liu, G. and J. Shen (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J. Biosci. Bioeng. 98: 251–3.

    Article  CAS  Google Scholar 

  5. Loipersböck, J., M. Lenzi, R. Rauch, and H. Hofbauer (2017) Hydrogen production from biomass: The behavior of impurities over a CO shift unit and a biodiesel scrubber used as a gas treatment stage. Korean J. Chem. Eng. 34: 2198–3.

    Article  Google Scholar 

  6. Kidanu, W. G., P. T. Trang, and H. H. Yoon (2017) Hydrogen and volatile fatty acids production from marine macroalgae by anaerobic fermentation. Biotechnol. Bioprocess Eng. 22: 612–3.

    Article  CAS  Google Scholar 

  7. Laurinavichene, T. V., N. A. Zorin, and A. A. Tsygankov (2002) Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Arch. Microbiol. 178: 437–3.

    Article  CAS  Google Scholar 

  8. Cracknell, J. A., A. F. Wait, O. Lenz, B. Friedrich, and F. A. Armstrong (2009) A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Proc. Natl. Acad. Sci. USA. 106: 20681–3.

    Article  Google Scholar 

  9. Murphy, B. J., F. Sargent, and F. A. Armstrong (2014) Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer. Energy Envrion. Sci. 7: 1426–3.

    Article  CAS  Google Scholar 

  10. Hwang, I. Y., D. H. Hur, J. H. Lee, C. H. Park, I. S. Chang, J. W. Lee, and E. Y. Lee (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 25: 375–3.

    Article  CAS  Google Scholar 

  11. Haynes, C. A. and R. Gonzalez (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10: 331–3.

    Article  CAS  Google Scholar 

  12. Hong, E., S. A. Jeon, S. S. Lee, and C. H. Shin (2018) Methane combustion over Pd/Ni-Al oxide catalysts: Effect of Ni/Al ratio in the Ni-Al oxide support. Korean J. Chem. Eng. 35: 1815–3.

    Article  CAS  Google Scholar 

  13. Hanson, R. S. and T. E. Hanson (1996) Methanotrophic bacteria. Microbiol. Rev. 60: 439–3.

    Article  CAS  Google Scholar 

  14. Fei, Q., M. T. Guarnieri, L. Tao, L. M. Laurens, N. Dowe, and P. T. Pienkos (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol. Adv. 32: 596–3.

    Article  CAS  Google Scholar 

  15. Kalyuzhnaya, M. G., A. W. Puri, and M. E. Lidstrom (2015) Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142–3.

    Article  CAS  Google Scholar 

  16. Lee, O. K., D. H. Hur, D. T. Nguyen, and E. Y. Lee (2016) Metabolic enginee. Biofuel Bioprod. Biorefin. 10: 848–3.

    Article  CAS  Google Scholar 

  17. Kalyuzhnaya, M. G., S. Yang, O. N. Rozova, N. E. Smalley, J. Clubb, A. Lamb, G. A. Nagana Gowda, D. Raftery, Y. Fu, F. Bringel, S. Vuilleumier, D. A. C. Beck, Y. A. Trotsenko, V. N. Khmelenina, and M. E. Lidstrom (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4: 2785.

    Article  CAS  Google Scholar 

  18. Gilman, A., Y. Fu, M. Hendershott, F. Chu, A. W. Puri, A. L. Smith, M. Pesesky, R. Lieberman, D. A. C. Beck, and M. E. Lidstrom (2017) Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C. Peer J. 5: e3945.

    Article  Google Scholar 

  19. Hur, D. H., J. G. Na, and E. Y. Lee (2017) Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. J. Chem. Technol. Biotechnol. 92: 311–3.

    Article  CAS  Google Scholar 

  20. Nguyen, A. D., D. Kim, and E. Y. Lee (2019) A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. BMC Genomics. 20: 130.

    Article  Google Scholar 

  21. Burgdorf, T., O. Lenz, T. Buhrke, E. Van Der Linden, A. K. Jones, S. P. Albracht, and B. Friedrich (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygentolerant biological hydrogen oxidation. J. Mol. Microbiol. Biotechnol. 10: 181–3.

    Article  CAS  Google Scholar 

  22. Nguyen, A. D., I. Y. Hwang, O. K. Lee, D. H. Hur, Y. C. Jeon, S. Hadiyati, M. S. Kim, S. H. Yoon, H. Jeong, and E. Y. Lee (2018) Functional analysis of Methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals. Catalysts. 8: 117–3.

    Article  Google Scholar 

  23. Baritugo, K. A., H. T. Kim, Y. C. David, J. H. Choi, J. Choi, T. W. Kim, C. Park, S. H. Hong, J. G. Na, K. J. Jeong, J. C. Joo, and S. J. Park (2018) Recent advances in metabolic engineering of Corynebacterium glutamicum strains as potential platform microorganisms for biorefinery. Biofuel Bioprod. Bior. 12: 899–3.

    Article  CAS  Google Scholar 

  24. Baritugo, K. A., H. T. Kim, Y. David, J. Choi, S. H. Hong, K. J. Jeong, J. H. Choi, J. C. Joo, and S. J. Park (2018) Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl. Microbiol. Biotechnol. 102: 3915–3.

    Article  CAS  Google Scholar 

  25. David, Y., M. G. Baylon, S. D. V. N. Pamidimarri, K. A. Baritugo, C. G. Chae, Y. J. Kim, T. W. Kim, M. S. Kim, J. G. Na, and S. J. Park (2017) Screening of microorganisms able to degrade low-rank coal in aerobic conditions: Potential coal biosolubilization mediators from coal to biochemicals. Biotechnol. Bioprocess Eng. 22: 178–3.

    Article  CAS  Google Scholar 

  26. Jeon, H. S., S. E. Park, B. Ahn, and Y. K. Kim (2017) Enhancement of biodiesel production in Chlorella vulgaris cultivation using silica nanoparticles. Biotechnol. Bioprocess Eng. 22: 136–3.

    Article  CAS  Google Scholar 

  27. Oh, Y. H., I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong, and S. J. Park (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J. Chem. Eng. 32: 1945–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Sogang University Research Grant of 2017 (201710069.01) and by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174010201150).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si Jae Park or Jeong-Geol Na.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, S.Y., Rhie, M.N., Jung, S.M. et al. Hydrogen Production from Methane by Methylomonas sp. DH-1 under Micro-aerobic Conditions. Biotechnol Bioproc E 25, 71–77 (2020). https://doi.org/10.1007/s12257-019-0256-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0256-6

Keywords

Navigation