Skip to main content
Log in

Discovery and expression of a Pseudomonas sp. esterase as a novel biocatalyst for the efficient biosynthesis of a chiral intermediate of pregabalin

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The enantioselective biocatalytic hydrolysis of rac-2-carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester (rac-cyanodiester, rac-CNDE) to obtain a key (S)-intermediate is crucial for the synthesis of Pregabalin. The gene estZF172 from Pseudomonas CGMCC No. 4184, which encoded a novel esterase EstZF172 with excellent stereoselective catalysis capacity of (R)-CNDE (E = 95), was obtained from genomic library construction through activity screening. EstZF172 was identified to be a new member of the bacterial esterase/lipase Family VIII by sequence alignment, phylogenetic tree analysis and homology model analysis, with preference toward shortchain p-nitrophenyl esters. The esterase was functionally expressed in E. coli BL21(DE3), exhibiting a 120-fold improvement in catalytic activity (4027.5 U/L) over the wild strain (33.43 U/L) toward CNDE. For the chiral hydrolysis of rac-CNDE catalyzed by recombinant cells, the optimum operating temperature and pH were determined to be 35°C and 8.5, respectively, based on the biochemical characterization of the purified EstZF172. Finally, the yield and ee of (S)-CNDE reached 47.7% and > 99.5% after reaction for 7 h with a substrate loading of 127.5 g/L (500 mM). The results suggested that EstZF172 is a potential biocatalyst for the synthesis of an important chiral intermediate of Pregabalin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, C. P., T. Angelotti, and E. Fauman (2007) Pharmacology and mechanism of action of pregabalin: The calcium channel a2-d (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res. 73: 137–150.

    Article  CAS  Google Scholar 

  2. Pfizer Inc. and Subsidiary Companies (2013) Financial Report. http:// www.pfizer.com/files/investors/presentations/FinancialReport2013.pdf.

  3. Caner, H., E. Groner, L. Levy, and I. Agranat (2004) Trends in the development of chiral drugs. Drug Discov. Today 9: 105–110.

    Article  CAS  Google Scholar 

  4. Evans, D. A., M. D. Ennis, and D. J. Mathre (1982) Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of a-substituted carboxylic acid derivatives. J. Am. Chem. Soc. 104: 1737–1739.

    Article  CAS  Google Scholar 

  5. Yuen, P., G. D. Kanter, C. P. Taylor, and M. G. Vartanian (1994) Enantioselective synthesis of PD144723: A potent stereospecific anticonvulsant. Bioorg. Med. Chem. Lett. 4: 823–826.

    Article  CAS  Google Scholar 

  6. Hoekstra, M. S., D. M. Sobieray, M. A. Schwindt, T. A. Mulhern, T. M. Grote, B. K. Huckabee, V. S. Hendrickson, L. C. Franklin, E. J. Granger, and G. L. Karrick (1997) Chemical development of CI-1008, an enantiomerically Pure Anticonvulsant. Org. Process Res. Dev. 1: 26–38.

    Article  CAS  Google Scholar 

  7. Huckabee, B. K. and D. M. Sobieray (1996) Methods of making (S)-3-(aminomethyl)-5-methylhexanoic acid. WO Patent 038,405.

    Google Scholar 

  8. Duan, L., Y. Ma, S. Shi, X. Yang, G. Zhang, and Y. Zhu (2006) Preparation method of pregabalin and its intermediate and the said intermediate. WO Patent 136,087.

    Google Scholar 

  9. Burns, M. P., J. K. Weaver, and J. W. Wong (2005) Stereoselective bioconversion of aliphatic dinitriles into cyano carboxylic acids. WO Patent 100,580.

    Google Scholar 

  10. Hedvati, L. and A. Fishman (2008) Use of enzymatic resolution for the preparation of intermediates of pregabalin. US Patent 0,026,433.

    Google Scholar 

  11. Martinez, C. A., S. Hu, Y. Dumond, J. Tao, P. Kelleher, and L. Tully (2008) Development of a chemoenzymatic manufacturing process for pregabalin. Org. Process Res. Dev. 12: 392–398.

    Article  CAS  Google Scholar 

  12. Pollard, D. J. and J. M. Woodley (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 25: 66–73.

    Article  CAS  Google Scholar 

  13. Wenda, S, S. Illner, A. Mell, and U. Kragl (2011) Industrial biotechnology–the future of green chemistry? Green Chem. 13: 3007–3047.

    Article  CAS  Google Scholar 

  14. Woodley, J. M. (2008) New opportunities for biocatalysis: Making pharmaceutical processes greener. Trends Biotechnol. 26: 321–327.

    Article  CAS  Google Scholar 

  15. Xie, Z., J. Feng, E. Garcia, M. Bernett, D. Yazbeck, and J. Tao (2006) Cloning and optimization of a nitrilase for the synthesis of (3S)-3-cyano-5-methyl hexanoic acid. J. Mol. Catal. B: Enz. 41: 75–80.

    Article  Google Scholar 

  16. Hedvati, L., G. Sterimbaum, Y. Raizi, and R. Aminov (2010) Stereoselective enzymatic synthesis of (S) or (R)-iso-butyl-glutaric ester. US Patent 0,087,525.

    Google Scholar 

  17. Felluga, F., G. Pitacco, E. Valentin, and C. D. Venneri (2008) A facile chemoenzymatic approach to chiral non-racemic ß-alkyl-γ-amino acids and 2-alkylsuccinic acids. A concise synthesis of (S)-(+)-Pregabalin. Tetrahedron: Asymm. 19: 945–955.

    Article  CAS  Google Scholar 

  18. Zheng, R. C., A. P. Li, Z. M. Wu, J. Y. Zheng, and Y. G. Zheng (2012) Enzymatic production of (S)-3-cyano-5-methylhexanoic acid ethyl ester with high substrate loading by immobilized Pseudomonas cepacia lipase. Tetrahedron: Asym. 23: 1517–1521.

    Article  CAS  Google Scholar 

  19. Dunn, P. J. (2012) The importance of green chemistry in process research and development. Chem. Soc. Rev. 41: 1452–1461.

    Article  CAS  Google Scholar 

  20. Tao, J. and J. H. Xu (2009) Biocatalysis in development of green pharmaceutical processes. Curr. Opin. Chem. Biol. 13: 43–50.

    Article  CAS  Google Scholar 

  21. Zheng, R. C., T. Z. Wang, D. J. Fu, A. P. Li, X. J. Li, and Y. G. Zheng (2013) Biocatalytic synthesis of chiral intermediate of pregabalin with high substrate loading by a newly isolated Morgarella morganii ZJB-09203. Appl. Microbiol. Biotechnol. 97: 4839–4847.

    Article  CAS  Google Scholar 

  22. Li, X. J., R. C. Zheng, H. Y. Ma, and Y. G. Zheng (2014) Engineering of Thermomyces lanuginosus lipase Lip: Creation of novel biocatalyst for efficient biosynthesis of chiral intermediate of Pregabalin. Appl. Microbiol. Biotechnol. 98: 2473–2483.

    Article  CAS  Google Scholar 

  23. Li, X. J., R. C. Zheng, Z. M. Wu, X. Ding, and Y. G. Zheng (2014) Thermophilic esterase from Thermomyces lanuginosus: Molecular cloning, functional expression and biochemical characterization. Protein Express. Purif. 101: 1–7.

    Article  Google Scholar 

  24. Wu, W., L. Yang, G. Xu, and J. Wu (2011) Strain screening and culture condition optimization for the enantioselectively hydrolysis of (3R)-2-carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester. China Biotechnol. 31: 86–93.

    CAS  Google Scholar 

  25. Sambrock, J. and D. W. Russel (2001) Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  26. Oterholm, A. and Z. J. Ordal (1966) Improved method for method for detection of microbial lipolysis. J Dairy Sci. 49: 1281–1284.

    Article  CAS  Google Scholar 

  27. Wagner, U. G., F. DiMaio, S. Kolkenbrock, and S. Fetzner (2014) Crystal structure analysis of EstA from Arthrobacter sp. Rue61a–an insight into catalytic promiscuity. FEBS Lett. 588: 1154–1160.

    Article  CAS  Google Scholar 

  28. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283–291.

    Article  CAS  Google Scholar 

  29. Shine, J. and L. Dalgarno (1974) The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. U.S.A. 71: 1342–1346.

    Article  CAS  Google Scholar 

  30. Chen, S. X. and B. Z. Shi (2007) Screening of strain producing a novel esterase with high enantioselectivity and molecular cloning of the enzyme gene. Acta Microbiol. Sin. 47: 452–455.

    CAS  Google Scholar 

  31. McKay, D. B., M. P. Jennings, E. A. Godfrey, I. C. MacRae, P. J. Rogers, and I. R. Beacham (1992) Molecular analysis of an esterase-encoding gene from a lipolytic psychrotrophic pseudomonad. J. Gen. Microbiol. 138: 701–708.

    Article  CAS  Google Scholar 

  32. Kim Y. S., H. B. Lee, K. D. Choi, S. Park, and O. J. Yoo (1994) Cloning of Pseudomonas fluorescens carboxylesterase gene and characterization of its product expressed in Escherichia coli. Biosci. Biotechnol. Biochem. 58: 111–116.

    Article  CAS  Google Scholar 

  33. Berger, R., M. Hoffmann, and U. Keller (1998) Molecular analysis of a gene encoding a cell-bound esterase from Streptomyces chrysomallus. J. Bacteriol. 180: 6396–6399.

    CAS  Google Scholar 

  34. Singh, R., A. Saxena, and H. Singh (2009) Identification of group specific motifs in ß-lactamase family of proteins. J. Biomed. Sci. 16: 109–115.

    Article  Google Scholar 

  35. Goldberg, S. D., W. Iannuccilli, T. Nguyen, J. Ju, and V. W. Cornish (2003) Identification of residues critical for catalysis in a class C ß-lactamase by combinatiorial scanning mutagenesis. Protein Sci. 12: 1633–1645.

    Article  CAS  Google Scholar 

  36. Brenner, S. (1988) The molecular evolution of genes and proteins: A tale of two serines. Nature 334: 528–530.

    Article  CAS  Google Scholar 

  37. Schütte, M. and S. Fetzner (2007) EstA from Arthrobacter nitroguajacolicus Rü61a, a thermo-and solvent-tolerant carboxylesterase related to class C ß-lactamases. Curr. Microbiol. 54: 230–236.

    Article  Google Scholar 

  38. Oefner, C., A. D’Arcy, J.J. Daly, K. Gubernator, R. L. Charnas, I. Heinze, C. Hubschwerlen, and F. K. Winkler (1990) Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Nature 343: 284–288.

    Article  CAS  Google Scholar 

  39. Lobkovsky, E., E. M. Billings, P. C. Moews, J. Rahil, R. F. Pratt, and J. R. Knox (1994) Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: Mechanistic interpretation of a ß-lactamase transition-state analog. Biochem. 33: 6762–6772.

    Article  CAS  Google Scholar 

  40. Dubus, A., P. Ledent, J. Lamotte-Brasseur, and J. M. Frère (1996) The roles of residues Tyr150, Glu272, and His314 in class C ß-lactamases. Proteins Struct. Funct. Genet. 25: 473–485.

    CAS  Google Scholar 

  41. Tsukamoto, K., K. Tachibana, N. Yamazaki, Y. Ishii, K. Ujiie, N. Nishida, and T. Sawai (1990) Role of lysine-67 in the active site of class C ß-lactamase from Citrobacter freundii GN346. Eur. J. Biochem. 88: 15–22.

    Article  Google Scholar 

  42. Arpigny, J. L. and K. E. Jaeger (1999) Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343: 177–183.

    Article  CAS  Google Scholar 

  43. Hausmann, S. and K. E. Jaeger (2010) Lipolytic enzymes from bacteria. pp. 1009–1126. In: K. N. Timmis (ed.). Handbook of Hydrocarbon and Lipid Microbiology. Springer Berlin Heidelberg, Berlin, Germany.

    Google Scholar 

  44. Yu, E.Y., M. A. Kwon, M. Lee, J. Y. Oh, J. E. Choi, J. Y. Lee, B. K. Song, D. H. Hahm, and J. K. Song (2011) Isolation and characterization of cold-active family VIII eaterases from an arctic soil metagenome. Appl. Microbiol. Biotechnol. 90: 573–581.

    Article  CAS  Google Scholar 

  45. Biver, S. and M. Vandenbol (2013) Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40: 191–200.

    Article  CAS  Google Scholar 

  46. Sharon, C., S. Furugoh, T. Yamakido, H. I. Ogawa, and Y. Kato (1998) Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. J. Ind. Microbiol. Biotechnol. 20: 304–307.

    Article  CAS  Google Scholar 

  47. Petersen, E. I., G. Valinger, B. Sölkner, G. Stubenrauch, and H. Schwab (2001) A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to ß-lactamases and DD-peptidases. J. Biotechnol. 89: 11–25.

    Article  CAS  Google Scholar 

  48. Jiang, X., X. Xu, Y. Huo, Y. Wu, X. Zhu, X. Zhang, and M. Wu (2012) Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch. Microbiol. 194: 207–214.

    Article  CAS  Google Scholar 

  49. Dong, H. P., Y. J. Wang, and Y. G. Zheng (2010) Enantioselective hydrolysis of diethyl 3-hydroxyglutarate to ethyl (S)-3-dydroxy-glutarate by immobilized Candida antarctica lipase B. J. Mol. Catal. B: Enz. 66: 90–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Wu or Lirong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Chen, S., Xu, G. et al. Discovery and expression of a Pseudomonas sp. esterase as a novel biocatalyst for the efficient biosynthesis of a chiral intermediate of pregabalin. Biotechnol Bioproc E 20, 473–487 (2015). https://doi.org/10.1007/s12257-015-0069-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0069-1

Keywords

Navigation