Skip to main content
Log in

Functional Characterization of a Novel Marine Microbial Esterase and its Utilization in the Enantioselective Preparation of (R)-Methyl 2-Chloropropionate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chiral 2-chloropropanoic acids and their ester derivatives are crucial intermediates in the synthesis of many chemicals, especially herbicides. The enzymatic synthesis of chiral 2-chloropropanoic acids and their ester derivatives by esterases was not easily achieved, because the structural difference between the two enantiomers was too small to be recognized by esterases. Herein, we report the expression and functional characterization of one novel low temperature-resistant esterase EST12–7 identified from the genome of Pseudonocardia antitumoralis SCSIO 01299 isolated from the sediments of the South China Sea. Biocatalyst EST12–7 could hydrolyze racemic methyl 2-chloropropinate and generate optically pure (R)-methyl 2-chloropropinate with high enantiomeric excess (>99 %) and conversion (>49 %) after process optimization. Notably, the addition of different surfactants and using surfactants of different concentrations in the kinetic resolution catalyzed by EST12–7 could greatly affect the enantiomeric excess and conversion rate of product (R)-methyl 2-chloropropinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Julieta, M., Jacques, B., & Francois, L. G. (1990). A practical synthesis of (R) and (S) 3-Hydroxyglutaric acid monoesters by enzymatic hydrolysis with a bacterial esterase. Synthetic Communications, 20, 315–319.

    Article  Google Scholar 

  2. Choi, S. B. K. A. C. Y. (1995). Effect of solid salt hydrates on the asymmetric esterification of 2-chloropropionic acid: control of water activity in organic solvent. Biotechnology Letters, 17, 1075–1076.

    Article  Google Scholar 

  3. Gless, R. D. (1986). Lewis acid mediated aminolysis of esters—conversion of methyl(S)-(−)-2-chloropropionate to (S)-(+)-N,N-diethyl-2-chloropropionamide. Synthetic Communications, 16, 633–638.

    Article  CAS  Google Scholar 

  4. Kohler, J. E. H., Hohla, M., Richters, M., & Konig, W. A. (1992). Cyclodextrin derivatives as chiral selectors—investigation of the interaction with (R,S)-methyl-2-chloropropionate by enantioselective gas-chromatography, Nmr-spectroscopy, and molecular-dynamics simulation. Angewandte Chemie International Edition in English, 31, 319–320.

    Article  Google Scholar 

  5. Kohler, J. E. H., Hohla, M., Richters, M., & Konig, W. A. (1994). A molecular-dynamics simulation of the complex-formation between methyl (R)/(S)-2-chloropropionate and heptakis(3-O-acetyl-2,6-di-O-Pentyl)-beta-cyclodextrin. Chemische Berichte, 127, 119–126.

    Article  CAS  Google Scholar 

  6. Maslejova, A., Ivanikova, R., Svoboda, I., Papankova, B., Dlhan, L., Miklos, D., et al. (2006). Structural characterization and magnetic properties of hexakis(imidazole)nickel(II) bis(formate), bis(chloroacetate), bis(2-chloropropionate) and hexakis(1-methyl-imidazole)nickel(II) chloride dihydrate. Polyhedron, 25, 1823–1830.

    Article  CAS  Google Scholar 

  7. Murashige, R., Hayashi, Y., Ohmori, S., Torii, A., Aizu, Y., Muto, Y., et al. (2011). Comparisons of O-acylation and Friedel–crafts acylation of phenols and acyl chlorides and fries rearrangement of phenyl esters in trifluoromethanesulfonic acid: effective synthesis of optically active homotyrosines. Tetrahedron, 67, 641–649.

    Article  CAS  Google Scholar 

  8. Vilas Athawale, N. M., & Manoj, A. (2001). Enzymatic synthesis of chiral menthyl methacrylate monomer by pseudomonas cepacia lipase catalysed resolution of (±)-menthol. Journal of Molecular Catalysis B: Enzymatic, 16, 169–173.

    Article  Google Scholar 

  9. Weavers, S. D. M. R. T. (1995). Application of radical CyclisationDodine atom transfer to the chiral synthesis of (−)-methylenolactocin. Tetrahedron Letters, 51, 11257–11270.

    Article  Google Scholar 

  10. Atsushi, K., Michiyo, F., Harumi, K., & Tatsuo, K. (2008). Production of (S)-2-chloropropionate by asymmetric reduction of 2-chloroacrylate with 2-haloacrylate reductase coupled with glucose dehydrogenase. Journal of Bioscience and Bioengineering, 105(4), 429–431.

    Article  Google Scholar 

  11. Dahod, S. K., & Siuta-Mangano, P. (1987). Carbon tetrachloride-promoted stereo selective hydrolysis of methyl-2-chloropropionate by lipase. Biotechnology and Bioengineering, 30, 995–999.

    Article  CAS  Google Scholar 

  12. Daniel, U., Staerk, A. S., & Gyula, V. P. (1995). Preparative gas chromatographic separation of the enantiomers of methyl 2-chloropropionate using a cyclodextrin-based. Journal of Chromatography A, 702, 251–257.

    Article  Google Scholar 

  13. Patrick Stahly, G., B.C.S., & John, R. M. (1987). Base-induced reactions of Polynitroarenes with methyl 2-Chloropropionate. The Journal of Organic Chemistry, 57, 690–692.

    Google Scholar 

  14. Chen, C. S., Yoshinori, F., Gary, G., & Charles, J. S. (1982). Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 104, 1294–1299.

    Google Scholar 

  15. Rakels, J. L. L. H. T. P., Straathof, A. J. J., & Heijnen, J. J. (1994). Comparison of enzymatic kinetic resolution in a batch reactor and a CSTR. Enzyme and Microbial Technology, 16, 791–794.

    Article  CAS  Google Scholar 

  16. Torres, S., Martínez, M. A., Pandey, A., & Castro, G. R. (2009). An organic-solvent-tolerant esterase from thermophilic bacillus licheniformis S-86. Bioresource Technology, 100(2), 896–902.

    Article  CAS  Google Scholar 

  17. Yele, V. U., & Desai, K. (2015). A new thermostable and organic solvent- tolerant lipase from staphylococcus warneri; optimization of media and production conditions using statistical methods. Applied Biochemistry and Biotechnology, 175(2), 855–869.

    Article  CAS  Google Scholar 

  18. Nardini, M., & Dijkst, B. W. (1999). α/β hydrolase fold enzyme: the family keeps growing. Current Opinion in Structural Biology, 9(16), 732–737.

    Article  CAS  Google Scholar 

  19. Park, H. J., Jeon, J. H., Kang, S. G., Lee, J. H., Lee, S. A., & Kim, H. K. (2007). Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expression and Purification, 52, 340–347.

    Article  CAS  Google Scholar 

  20. Roh, C., & Villatte, F. (2008). Isolation of a low-temperature adapted lipolytic enzyme from uncultivated micro-organism. Journal of Applied Microbiology, 105, 116–123.

    Article  CAS  Google Scholar 

  21. Chu, X., He, H., Guo, C., & Sun, B. (2008). Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Applied Microbiology and Biotechnology, 80, 615–625.

    Article  CAS  Google Scholar 

  22. Jiang, X., Xu, X., Huo, Y., Wu, Y., Zhu, X., Zhang, X., et al. (2011). Identification and characterization of novel esterases from a deep-sea sediment metagenome. Archives of Microbiology, 194, 207–214.

    Article  Google Scholar 

  23. Elend, C., Schmeisser, C., Hoebenreich, H., Steele, H. L., & Streit, W. R. (2007). Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. Journal of Biotechnology, 130, 370–377.

    Article  CAS  Google Scholar 

  24. Hu, Y., Fu, C., Huang, Y., Yin, Y., Cheng, G., Lei, F., et al. (2010). Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment. FEMS Microbiology Ecology, 72, 228–237.

    Article  CAS  Google Scholar 

  25. Alquati, C., Gioia, L. D., Santarossa, G., & Alberghina, L. (2002). The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling. European Journal of Biochemistry, 269, 3321–3328.

    Article  CAS  Google Scholar 

  26. Choo, D. W., Kurihara, T., Suzuki, T., & Soda, K. (1998). A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11–1:gene cloning and enzyme purification and characterization. Applied Biochemistry and Biotechnology, 64, 486–491.

    CAS  Google Scholar 

  27. Mayordomo, I., Randez Gil, F., & Prieto, J. A. (2000). Isolation, purification, and characterization of a cold-active lipase from Aspergillus nidulans. Journal of Agricultural and Food Chemistry, 48, 105–109.

    Article  CAS  Google Scholar 

  28. Tanaka, D., Yoneda, S., Yamashiro, Y., Sakatoku, A., Kayashima, T., Yamakawa, K., et al. (2012). Characterization of a new cold-adapted lipase from Pseudomonas sp.TK-3. Applied Microbiology and Biotechnology, 168, 327–338.

    CAS  Google Scholar 

  29. Abhas, M., & Pratima, R. (2015). A novel cold-active lipase from psychrotolerant Pseudomonas sp.AKM-L5 showed organic solvent resistant and suitable for detergent formulation. Journal of Molecular Catalysis B: Enzymatic, 120, 173–178.

    Article  Google Scholar 

  30. Lee, H. K. A., Kwak, M. J., Song, S. H., & Jeon, W. H. B. C. (2003). Purification and characterization of cold active lipase from Psychrotrophic aeromonas sp. LPB 4. Journal of Microbiology and Biotechnology, 41, 22–27.

    CAS  Google Scholar 

  31. Ji, X. L., Chen, G. Y., Zhang, Q., Lin, L. B., & Wei, Y. L. (2015). Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. Journal of Basic Microbiology, 55, 718–728.

    Article  CAS  Google Scholar 

  32. Naomi Muryoi, M. S., Shoji Kaneko, H. K., Hitoshi-Obata, M. W. F., Yaish, M. G., & Glick, A. B. R. (2004). Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Journal of Bacteriology, 186, 5661–5671.

    Article  Google Scholar 

  33. Rashid, N., Shimada, Y., Ezaki, S., Atomi, H., & Imanaka, T. (2001). Low-temperature lipase from psychrotrophic pseudomonas sp. strain KB70 0 a. Applied and Environmental Microbiology, 67(9), 4064–4069.

    Article  CAS  Google Scholar 

  34. Ahmed, N. Z. A. E. M. (2009). Extracellular lipase of Aspergillus niger NRRL3; production, partial purification and properties. Indian Journal of Microbiology, 49, 77–83.

    Article  Google Scholar 

  35. WF, S. (1951). A study of the relative specifi city of lipases produced by Penicillium roqueforti and Aspergillus niger. Archives of Biochemistry and Biophysics, 30, 165–167.

    Google Scholar 

  36. Antoine Overbeeke, P. L., & J.A.J. (2003). Enantioselectivity of Candida rugosa lipase in the hydrolysis of 2-chloropropionic acid methyl Ester. Journal of Molecular Catalysis B: Enzymatic, 21, 89–91.

    Article  Google Scholar 

  37. Erland Holmberg, I., Erik Hedenstriim, M. H., Per, B., Torbjiirn, N., Hans-Erik, H., & A., K. H. (1991). Reaction conditions for the resolution of 2-methylalkanoic acids in esterification and hydrolysis with lipase from Candida cylindracea. Applied Microbiology and Biotechnology, 35, 572–578.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the financial supports from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030404), National Natural Science Foundation of China (No.21302199), Guangzhou Science and Technology Plan Projects (201510010012) and Key Project “Engineering High-Performance Microorganisms for Advanced Bio-Based Manufacturing” from the Chinese Academy of Sciences (KGZD-EW-606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Deng, D., Sun, A. et al. Functional Characterization of a Novel Marine Microbial Esterase and its Utilization in the Enantioselective Preparation of (R)-Methyl 2-Chloropropionate. Appl Biochem Biotechnol 180, 210–227 (2016). https://doi.org/10.1007/s12010-016-2094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2094-8

Keywords

Navigation