Skip to main content
Log in

Encapsulated yeast cell-free system: A strategy for cost-effective and sustainable production of bio-ethanol in consecutive batches

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study was intended to develop an encapsulated yeast cell-free system (EyCFS) by confining yeast cell-free lysate within a calcium alginate capsule. The system was evaluated for bio-ethanol production at elevated temperatures and was compared to a bare yeast cell-free system (ByCFS). Fermentation of 10 g/L glucose with shaking (150 rpm), using 2 mg/mL cell-free proteins in the ByCFS produced 3.31 g/L bio-ethanol, corresponding to 65% of the maximal theoretical yield, at 45°C and pH 7.0. On the contrary, the EyCFS produced 4.12 g/L bioethanol, corresponding to 81% of the maximal theoretical yield, under the same experimental conditions. The EyCFS also retained 32% of its original activity after 15 consecutive batches. We observed an 11% increase in bio-ethanol production after replenishment of cofactors (ATP and NADH) and ATPase. The weight-based total turnover number (TTNw; 0.82 × 103), cost ratio (R value; 1.22), and yield (80.4%) indicated the economic suitability of the EyCFS for large-scale production. Connecting the EyCFS with an encapsulated saccharification system through separate hydrolysis and fermentation (SHF) resulted in production of 4.87 g/L bio-ethanol, corresponding to 87.6% of the maximal theoretical yield. This system resolved serious limitations of conventional simultaneous saccharification and fermentation in bare cell-free systems. These data demonstrates the superiority of the proposed system in terms of thermal stability, yield, efficacy, and cost-effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayeni, A. O., J. A. Omoleye, S. Mudliar, F. K. Hymore, and R. A. Pandey (2014) Utilization of lignocellulosic waste for ethanol production: Enzymatic digestibility and fermentation of pretreated shea tree sawdust. Korean J. Chem. Eng. 31: 1–7.

    Article  Google Scholar 

  2. Saptoro, A., M. T. H. Herng, and E. L. W. Teng (2014) Oxygen transfer to cassava starch solutions in an aerated, well-mixed bioreactor: Experimental and mass transfer studies. Korean J. Chem. Eng. 31: 650–658.

    Article  CAS  Google Scholar 

  3. He, M. X., H. Qin, X. Yin, Z. Y. Ruan, F. R. Tan, B. Wu, Z. X. Shui, L. C. Dai, and Q. C. Hu (2014) Direct ethanol production from dextran industrial waste water by Zymomonas mobilis. Korean J. Chem. Eng. 31: 2003–2007.

    Article  CAS  Google Scholar 

  4. Prasetyo, J. and E. Y. Park (2013) Waste paper sludge as a potential biomass for bio-ethanol production. Korean J. Chem. Eng. 30: 253–261.

    Article  CAS  Google Scholar 

  5. Zhang, N., V. S. Green, X. Ge, B. J. Savary, and J. Xu (2014) Ethanol fermentation of energy beets by self-flocculating and non-flocculating yeasts. Bioresour. Technol. 155: 189–197.

    Article  CAS  Google Scholar 

  6. Khattak, W. A., T. Khan, J. H. Ha, M. Ul-Islam, M. K. Kang, and J. K. Park (2013) Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation. Enz. Microb. Tech. 53: 322–330.

    Article  CAS  Google Scholar 

  7. Li, H., T. Yang, J. S. Gong, L. Xiong, Z. M. Lu, H. Li, J. S. Shi, and Z. H. Xu (2014) Improving the catalytic potential and substrate tolerance of Gibberella intermedia nitrilase by whole-cell immobilization. Bioproc. Biosyst. Eng. 38: 189–197.

    Article  Google Scholar 

  8. Andrade, G. S. S., A. K. F. Carvalho, C. M. Romero, P. C. Oliveira, and H. F. de Castro (2014) Mucor circinelloides wholecells as a biocatalyst for the production of ethyl esters based on babassu oil. Bioproc. Biosyst. Eng. 37: 2539–2548.

    Article  CAS  Google Scholar 

  9. Rupp, S. (2013) Next-generation bioproduction systems: Cellfree conversion concepts for industrial biotechnology. Eng. Life. Sci. 13:19–25.

    Article  CAS  Google Scholar 

  10. Khattak, W. A., M. Ul-Islam, M. W. Ullah, B. Yu, S. Khan, and J. K. Park (2014) Yeast cell-free enzyme system for bio-ethanol production at elevated temperatures. Proc. Biochem. 54: 357–364.

    Article  Google Scholar 

  11. Zhang, Y. H. P (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: Challenges and opportunities. Biotechnol. Bioeng. 105: 663–677.

    CAS  Google Scholar 

  12. Welch, P. and R. K. Scopes (1985) Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J. Biotechnol. 2: 257–273.

    Article  CAS  Google Scholar 

  13. Yoo, H. Y., J. H. Lee, Y. J. Suh, S. B. Kim, S. M. Park, and S. W. Kim (2014) Immobilization of acetyl xylan esterase on modified graphite oxide and utilization to peracetic acid production. Biotechnol. Bioproc. Eng. 19: 1042–1047.

    Article  CAS  Google Scholar 

  14. Park, J. K. and H. N. Chang (2000) Microencapsulation of microbial cells. Biotechnol. Adv. 18: 303–319.

    Article  CAS  Google Scholar 

  15. Qi, W. T., J. Ma, W. T. Yu, Y. B. Xie, W. Wang, and X. Ma (2006) Behavior of microbial growth and metabolism in alginate–chitosan–alginate (ACA) microcapsules. Enz. Microb. Tech. 38: 697–704.

    Article  CAS  Google Scholar 

  16. Talebnia, F., C. Niklasson, and M. J. Taherzadeh (2005) Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol. Bioeng. 90: 345–353.

    Article  CAS  Google Scholar 

  17. Min, K. and Y. J. Yoo (2014) Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol. Bioproc. Eng. 19: 553–567.

    Article  CAS  Google Scholar 

  18. Ullah, M. W., W. A. Khattak, M. Ul-Islam, S. Khan, and J. K. Park (2014) Bio-ethanol production through simultaneous saccharification and fermentation using an encapsulated reconstituted cell-free enzyme system. Biochem. Eng. J. 91: 110–119.

    Article  CAS  Google Scholar 

  19. Taqieddin, E. and M. Amiji (2004) Enzyme immobilization in novel alginate–chitosan core-shell Microcapsules. Biomat. 25: 1937–1945.

    Article  CAS  Google Scholar 

  20. Ul-Islam, M., T. Khan, and J. K. Park (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohyd. Polym. 89: 1189–1197.

    Article  CAS  Google Scholar 

  21. Amiji, M. M. (1995) Permeability and blood compatibility properties of chitosan-poly (ethylene oxide) blend membranes for hemodialysis. Biomat. 16: 593–599.

    Article  CAS  Google Scholar 

  22. Blandino, A., M. Macýas, and D. Cantero (2000) Glucose oxidase release from calcium alginate gel capsules. Enz. Microb. Tech. 27: 319–324.

    Article  CAS  Google Scholar 

  23. Dey, G., B. Singh, and R. Banerjee (2003) Immobilization of 2-amylase produced by Bacillus circulans GRS 313. Braz. Arch. Biol. Techn. 46: 167–176.

    Article  CAS  Google Scholar 

  24. Finotelli, P. V., D. Da Silva, M. Sola-Penna, A. M. Rossi, M. Farina, L. R. Andrade, A. Y. Takeuchi, and M. H. Rocha-Leão (2010) Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloid. Surface. B. 81: 206–211.

    Article  CAS  Google Scholar 

  25. Chang, H. N., G. H. Seong H. I. K. Yoo, J. K. Park, and J. H. Seo (1996) Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules. Biotechnol. Bioeng. 51: 157–162.

    Article  Google Scholar 

  26. Singer, M. A. and S. Lindquist (1998) Thermotolerance in Saccharomyces cerevisiae: The Yin and Yang of trehalose. Trends Biotechnol. 16: 460–468.

    Article  CAS  Google Scholar 

  27. Peterson, M. E., R. Eisenthal, M. J. Danson, A. Spence, and R. M. Daniel (2004) A new intrinsic thermal parameter for enzymes reveals true temperature optima. J. Biol. Chem. 279: 20717–20722.

    Article  CAS  Google Scholar 

  28. Dincbas, S. and E. Demirkan (2010) Comparison of hydrolysis abilities onto soluble and commercial raw starches of immobilized and free B. amyloliquefaciens á-amylase. J. Biol. Environ. Sci. 4: 87–95.

    Google Scholar 

  29. Berg, J. M., J. L. Tymoczko, and L. Stryer (2002) Biochemistry. 5th ed., Freeman, NY, USA.

    Google Scholar 

  30. Talekar, S. and S. Chavare (2012) Optimization of immobilization of a-amylase in alginate gel and its comparative biochemical studies with free á-amylas. Res. Sci. Tech. 4: 1–5.

    CAS  Google Scholar 

  31. Yang, X., F. Xie, and G. Zhang (2008) Purification, characterization, and substrate specificity of two 2, 3-dihydroxybiphenyl 1, 2- dioxygenase from Rhodococcus sp. R04, showing their distinct stability at various temperatures. Biochimie. 90: 1530–1538.

    CAS  Google Scholar 

  32. Zhou, J., J. Zhang, A. E. David, and V. C. Yang (2013) Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles. Nanotechnol. 24: 375102.

    Article  Google Scholar 

  33. da Silva, A. S., R. J. S. Jacques, R. Andreazza, F. M. Bento, and F. O. Camargo (2013) The effects of trace elements, cations, and environmental conditions on protocatechuate 3,4-dioxygenase activity. Sci. Agric. 70: 68–73.

    Article  Google Scholar 

  34. Li, Y., W. Wang, and P. Han (2014) Immobilization of Candida sp, 99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption. Korean J. Chem. Eng. 31: 98–103.

    Article  CAS  Google Scholar 

  35. Selwood, T. and E. K. Jaffe (2011) Dynamic dissociating homooligomers and the control of protein function. Arch. Biochem. Biophys. 519: 131–143.

    Article  Google Scholar 

  36. Stewart, G. R. and D. Moore (1971) Factors affecting the level and activity of pyruvate kinase from Coprinus Zizgopus sensu Buller. J. Gen. Microbiol. 66: 361–370.

    Article  CAS  Google Scholar 

  37. Strehaiano, P. and G. Goma (1983) Effect of initial substrate concentration on two wine yeasts: Relation between glucose sensitivity and ethanol inhibition. Am. J. Enol. Vitic. 34: 1–5.

    CAS  Google Scholar 

  38. Belfiore, F., S. Iannello, R. Campione, and G. Volpicelli (1989) Metabolic effects of high glucose concentrations: Inhibition of hepatic pyruvate kinase. Diabetes Res. 10: 183–186.

    CAS  Google Scholar 

  39. Boles, E. and F. K. Zimmermann (1993) Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Arch. Microbaol. 160: 324–328.

    Article  CAS  Google Scholar 

  40. Valentini, G., L. Chiarelli, F. Riccardo, M. L. Speranza, A. Galizzi, and A. Mattevi (2000) The allosteric regulation of pyruvate kinase. J. Biol. Chem. 24: 18145–18152.

    Article  Google Scholar 

  41. Khattak, W. A., M. K. Kang, M. Ul-Islam, and J. K. Park (2013) Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth. Bioproc. Biosyst. Eng. 36: 737–747.

    Article  CAS  Google Scholar 

  42. Peng, Y.Q., S. Z. Wang, L. Lan, W. Chen, and B. S. Fang (2013) Resin adsorption application for product separation and catalyst recycling in coupled enzymatic catalysis to produce 1,3-propanediol and dihydroxyacetone for repeated batch. Eng. Life. Sci. 13: 479–486.

    Article  CAS  Google Scholar 

  43. Kim, D. M. and Swartz Jr (2000) Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol. Prog. 16: 385–390.

    Article  CAS  Google Scholar 

  44. Calhoun, K. A. and Swartz Jr (2005) Energizing cell-free protein synthesis with glucose metabolism. Biotechnol. Bioeng. 90: 606–613.

    Article  CAS  Google Scholar 

  45. Hardie, D. G. and S. A. Hawley (2001) AMP-activated protein kinase: The energy charge hypothesis revisited. BioEssays. 23: 1112–1119.

    Article  CAS  Google Scholar 

  46. Stryer, L., J. M. Berg, and J. L. Tymoczko (2007) Biochemistry. 6th ed., Freeman, San Francisco: W. H. USA.

    Google Scholar 

  47. Zhang, Y. H. P (2009) A sweet out-of-the-box solution to the hydrogen economy: Is the sugar-powered car science fiction? Energy. Environ. Sci. 2: 272–282.

    Article  CAS  Google Scholar 

  48. Khan, S., M. Ul-Islam, W. A. Khattak, M. W. Ullah, B. Yu, and J. K. Park (2015) Enhanced bio-ethanol production via simultaneous saccharification and fermentation through a cell free enzyme system prepared by disintegration of waste of beer fermentation broth. Korean J. Chem. Eng. 32: 694–701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Kon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, M.W., Khattak, W.A., Ul-Islam, M. et al. Encapsulated yeast cell-free system: A strategy for cost-effective and sustainable production of bio-ethanol in consecutive batches. Biotechnol Bioproc E 20, 561–575 (2015). https://doi.org/10.1007/s12257-014-0855-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0855-1

Keywords

Navigation