Skip to main content
Log in

Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Most biomanufacturing systems developed for the production of biocommodities are based on whole-cell systems. However, with the advent of innovative technologies, the focus has shifted from whole-cell towards cell-free enzyme system. Since more than a century, researchers are using the cell-free extract containing the required enzymes and their respective cofactors in order to study the fundamental aspects of biological systems, particularly fermentation. Although yeast cell-free enzyme system is known since long ago, it is rarely been studied and characterized in detail. In this review, we hope to describe the major pitfalls encountered by whole-cell system and introduce possible solutions to them using cell-free enzyme systems. We have discussed the glycolytic and fermentative pathways and their regulation at both transcription and translational levels. Moreover, several strategies employed for development of cell-free enzyme system have been described with their potential merits and shortcomings associated with these developmental approaches. We also described in detail the various developmental approaches of synthetic cell-free enzyme system such as compartmentalization, metabolic channeling, protein fusion, and co-immobilization strategies. Additionally, we portrayed the novel cell-free enzyme technologies based on encapsulation and immobilization techniques and their development and commercialization. Through this review, we have presented the basics of cell-free enzyme system, the strategies involved in development and operation, and the advantages over conventional processes. Finally, we have addressed some potential directions for the future development and industrialization of cell-free enzyme system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agapakis CM, Ducat DC, Boyle PM, Wintermute EH, Way JC, Silver PA (2010) Insulation of a synthetic hydrogen metabolism circuit in bacteria. J Biol Eng 4:3. doi:10.1186/1754-1611-4-3

    PubMed Central  PubMed  Google Scholar 

  • Aguilera A, Zimmermann FK (1986) Isolation and molecular analysis of the phosphoglucose isomerase structural gene of Saccharomyces cerevisiae. Mol Gen Genet 202:83–89. doi:10.1007/BF00330521

    CAS  PubMed  Google Scholar 

  • Allain EJ (2007) Cell-free ethanol production: the future of fuel ethanol? J Chem Technol Biotechnol 82:117–120. doi:10.1002/jctb.1649

    CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568. doi:10.1126/science.1131969

    CAS  PubMed  Google Scholar 

  • Arnaud JP, Lacroix C, Choplin L (1992) Effect of agitation rate on cell release rate and metabolism during continuous fermentation with entrapped growing. Biotechnol Tech 6:265–270. doi:10.1007/BF02439356

    CAS  Google Scholar 

  • Ayeni AO, Omoleye JA, Mudliar S, Hymore FK, Pandey RA (2014) Utilization of lignocellulosic waste for ethanol production: enzymatic digestibility and fermentation of pretreated shea tree sawdust. Korean J Chem Eng 31:1180–1186. doi:10.1007/s11814-014-0026-2

    CAS  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105. doi:10.1016/j.biotechadv.2007.09.002

    CAS  PubMed  Google Scholar 

  • Bartrons R, Van Schaftingen E, Vissers S, Hers HG (1982) The stimulation of yeast phosphofructokinase by fructose 2,6-bisphosphate. FEBS Lett 143:137–140. doi:10.1016/0014-5793(82)80290-1

    CAS  PubMed  Google Scholar 

  • Bauler P, Huber G, Leyh T, McCammon J (2010) Channeling by proximity: the catalytic advantages of active site colocalization using Brownian dynamics. J Phys Chem 1:1332–1335. doi:10.1021/jz1002007

    CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2010) Biochemistry. W.H Freeman and Company, New York

    Google Scholar 

  • Betancor L, Berne C, Luckarift HR, Spain JC (2006) Coimmobilization of a redox enzyme and a cofactor regeneration system. Chem Commun 14:3640–3642. doi:10.1039/b604689d

    Google Scholar 

  • Bischof JC, Padanilam J, Holmes WH, Ezzell RM, Lee RC, Tompkins RG, Yarmush ML, Toner M (1995) Dynamics of cell membrane permeability changes at supraphysiological temperatures. Biophys J 68:2608–2614. doi:10.1016/S0006-3495(95)80445-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA, Savage DF (2012) Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci USA 109:478–483. doi:10.1073/pnas.1108557109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breddam K, Beenfeldt T (1991) Acceleration of yeast autolysis by chemical methods for production of intracellular enzymes. Appl Microbiol Biotechnol 35:323–329. doi:10.1007/BF00172720

    CAS  Google Scholar 

  • Buchner E (1897) Alkoholische Gährung ohne Hefezellen. Ber Dtsch Chem Ges 30:117–124. doi:10.1002/cber.189703001215

    CAS  Google Scholar 

  • Buchner E (1966) “Cell Free Fermentation" Nobel Lectures. Chemistry 1901–1921:99–122

    Google Scholar 

  • Bulow L, Ljungcrantz P, Mosbach K (1985) Preparation of a soluble bifunctional enzyme by gene fusion. Nat Biotech 3:821–823. doi:10.1038/nbt0985-821

    Google Scholar 

  • Calhoun KA, Swartz JR (2005) Energizing cell-free protein synthesis with glucose metabolism. Biotechnol Bioeng 90:606–613. doi:10.1002/bit.20449

    CAS  PubMed  Google Scholar 

  • Calhoun KA, Swartz JR (2006) Total amino acid stabilization during cell-free protein synthesis reactions. J Biotechnol 123:193–203. doi:10.1016/j.jbiotec.2005.11.011

    CAS  PubMed  Google Scholar 

  • Carere J, Baker P, Seah SY (2011) Investigating the molecular determinants for substrate channeling in BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls degradation pathway. Biochemistry 50:8407–8416. doi:10.1021/bi200960j

    CAS  PubMed  Google Scholar 

  • Chambers A, Tsang JS, Stanway C, Kingsman AJ, Kingsman SM (1989) Transcriptional control of the Saccharomyces cerevisiae PGK gene by RAP1. Mol Cell Biol 9:5516–5524. doi:10.1128/MCB.9.12.5516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapple C, Ladish M, Meilan R (2007) Loosening lignin’s grip on biofuel production. Nat Biotechnol 25:746–748. doi:10.1038/nbt0707-746

    CAS  PubMed  Google Scholar 

  • Chen AH, Silver PA (2012) Designing biological compartmentalization. Trends Cell Biol 22:662–670. doi:10.1016/j.tcb.2012.07.002

    CAS  PubMed  Google Scholar 

  • Chen Z, Jandt U, Rappert S, Zeng A-P (2013) Proteindesign fuer die Entwicklung von industriellen Mikroorganismen. BIOspektrum 19:99–101. doi:10.1007/s12268-013-0276-2

    Google Scholar 

  • Ciriacy M, Breitenbach I (1979) Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J Bacteriol 139:152–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clifton D, Weinstock SB, Fraenkel DG (1978) Glycolysis mutants in Saccharomyces cerevisiae. Genetics 88:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Compagno C, Brambilla L, Capitanio D, Boschi F, Ranzi BM, Porro D (2001) Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant. Yeast 18:663–670. doi:10.1002/yea.715

    CAS  PubMed  Google Scholar 

  • Conrado RJ, Varner JD, DeLisa MP (2008) Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr Opin Biotechnol 19:492–499. doi:10.1016/j.copbio.2008.07.006

    CAS  PubMed  Google Scholar 

  • Delneri D, Gardner DCJ, Bruschi CV, Oliver SG (1999) Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knockout strain. Yeast 15:1681–1698. doi:10.1002/(SICI)1097-0061(199911)15:15<1681::AID-YEA486>3.0.CO;2-A

    CAS  PubMed  Google Scholar 

  • Denis CL, Ferguson J, Young ET (1983) mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a non fermentable carbon source. J Biol Chem 258:1165–1171, PMID: 6337132

    CAS  PubMed  Google Scholar 

  • Dickinson JR, Schweizer M (2004) Metabolism and molecular physiology of Saccharomyces cerevisiae. CRC Press, London

    Google Scholar 

  • Dickinson JR, Harrison SJ, Dickinson JA, Hewlins MJ (2000) An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275:10937–10942. doi:10.1074/jbc.275.15.10937

    CAS  PubMed  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551. doi:10.1038/nrmicro925

    CAS  PubMed  Google Scholar 

  • Dunn MF (2012) Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Arch Biochem Biophys 519:154–166. doi:10.1016/j.abb.2012.01.016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards MC, Doran-Peterson J (2012) Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol 95:565–575. doi:10.1007/s00253-012-4173-2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elçin YM (1995) Encapsulation of urease enzyme in xanthan-alginate spheres. Biomaterials 16:1157–1161. doi:10.1016/0142-9612(95)93580-7

    PubMed  Google Scholar 

  • El-Mansi E, Bryce CF, Demain AL, Allman A (2006) Fermentation microbiology and biotechnology. CRC Press, London

    Google Scholar 

  • Entian K-D (1997) Sugar phosphorylation in yeast. In: Zimmermann FK and Entian K-D (ed) Yeast sugar metabolism. Biochemistry, Genetics, Biotechnology, and Applications. Technomic, Lancaster, pp 67–79

  • Fan LH, Zhang ZJ, Yu XY, Xue YX, Wang MW, Tan TW (2013) In vitro assembly of minicellulosomes with two scaffoldins on the yeast cell surface for cellulose saccharification and bioethanol production. Process Biochem 48:430–437. doi:10.1016/j.procbio.2013.01.012

    CAS  Google Scholar 

  • Forster AC, Church GM (2007) Synthetic biology projects in vitro. Genome Res 17:1–6. doi:10.1101/gr.5776007

    CAS  PubMed  Google Scholar 

  • Fothergill-Gilmore LA, Watson HC (1990) Phosphoglycerate mutases. Biochem Soc Trans 18:190–193, PMID: 2165930

    CAS  PubMed  Google Scholar 

  • Frank RA, Titman CM, Pratap JV, Luisi BF, Perham RN (2004) A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306:872–876. doi:10.1126/science.1101030

    CAS  PubMed  Google Scholar 

  • Ge X, Green VS, Zhang N, Sivakumar G, Xu J (2012) Eastern gamagrass as an alternative cellulosic feedstock for bioethanol production. Process Biochem 47:335–339. doi:10.1016/j.procbio.2011.11.008

    CAS  Google Scholar 

  • Gehrmann W, Elsner M (2011) A specific fluorescence probe for hydrogen peroxide detection in peroxisomes. Free Radic Res 45:501–506. doi:10.3109/10715762.2011.560148

    CAS  PubMed  Google Scholar 

  • Gitai Z (2005) The new bacterial cell biology: moving parts and subcellular architecture. Cell 120:577–586. doi:10.1016/j.cell.2005.02.026

    CAS  PubMed  Google Scholar 

  • Goldberg S (2008) Mechanical/physical methods of cell disruption and tissue homogenization. Methods Mol Biol 424:3–22. doi:10.1007/978-1-60327-064-9_1

    PubMed  Google Scholar 

  • Gong Z, Shen H, Wang Q, Yang X, Xie H, Zhao ZK (2013) Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol Biofuels 6:36. doi:10.1186/1754-6834-6-36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green JBA, Wright APH, Cheung WY, Lancashire WE, Hartley BS (1988) The structure and regulation of phosphoglucose isomerase in Saccharomyces cerevisiae. Mol Gen Genet 215:100–106. doi:10.1007/BF00331310

    CAS  PubMed  Google Scholar 

  • Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBOJ 22:24–35. doi:10.1093/emboj/cdg014

    CAS  Google Scholar 

  • Griffiths LJ, Anyim M, Doffman SR, Wilks M, Millar MR, Agrawal SG (2006) Comparison of DNA extraction methods for Aspergillus fumigatus using real-time PCR. J Med Microbiol 55:1187–1191. doi:10.1099/jmm. 0.46510-0

    CAS  PubMed  Google Scholar 

  • Gu Y, Shrivastava IH, Amara SG, Bahar I (2009) Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Proc Natl Acad Sci USA 106:2589–2594. doi:10.1073/pnas.0812299106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haeckel R, Hess B, Lauterborn W, Wuster KH (1968) Purification and allosteric properties of yeast pyruvate kinase. Hoppe-Seyler’s Z. Physiol Chem 349:699–714, PMID: 4386962

    CAS  Google Scholar 

  • Hakobyan D, Nazaryan K (2010) Molecular dynamics study of interaction and substrate channeling between neuron-specific enolase and B-type phosphoglycerate mutase. Proteins Struct Funct Bioinforma 78:1691–1704. doi:10.1002/prot.22686

    CAS  Google Scholar 

  • Han M, Kang KE, Kim Y, Choi G-W (2013) High efficiency bioethanol production from barley straw using a continuous pretreatment reactor. Process Biochem 48:488–495. doi:10.1016/j.procbio.2013.01.007

    CAS  Google Scholar 

  • Hasunuma T, Akihiko K (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294. doi:10.1016/j.procbio.2012.05.004

    CAS  Google Scholar 

  • He M-X, Qin H, Yin X, Ruan Z-Y, Tan F-R, Wu B, Shui Z-X, Dai L-C, Hu Q-C (2014) Direct ethanol production from dextran industrial waste water by Zymomonas mobilis. Korean J Chem Eng. doi:10.1007/s11814-014-0108-1

    Google Scholar 

  • Heinisch JJ, von Borstel RC, Rodicio R (1991) Sequence and localization of the gene encoding yeast phosphoglycerate mutase. Cur Genet 20:167–171. doi:10.1007/BF00312781

    CAS  Google Scholar 

  • Heinisch JJ, Muller S, Schluter E, Jacoby J, Rodicio R (1998) Investigation of two yeast genes encoding putative isoenzymes of phosphoglycerate mutase. Yeast 14:203–213. doi:10.1002/(SICI)1097-0061(199802)14:3<203::AID-YEA205>3.0.CO;2-8

    CAS  PubMed  Google Scholar 

  • Herrero P, Galindez J, Ruiz N, Martinez-Campa C, Moreno F (1995) Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast 11:137–144. doi:10.1002/yea.320110205

    CAS  PubMed  Google Scholar 

  • Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Blüthgen N, Borger S, Costenoble R, Heinemann M, Hucka M, Le Novère N, Li P, Liebermeister W, Mo ML, Oliveira AP, Petranovic D, Pettifer S, Simeonidis E, Smallbone K, Spasić I, Weichart D, Brent R, Broomhead DS, Westerhoff HV, Kirdar B, Penttilä M, Klipp E, Palsson BØ, Sauer U, Oliver SG, Mendes P, Nielsen J, Kell DB (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160. doi:10.1038/nbt1492

    PubMed Central  PubMed  Google Scholar 

  • Hess B, Haeckel R, Brand K (1966) FDP-activation of yeast pyruvate kinase. Biochem Bioph Res Co 24:824–831. doi:10.1016/0006-291X(66)90322-6

    CAS  Google Scholar 

  • Hildebrand A, Schlacta T, Warmack R, Kasuga T, Fan Z (2013) Engineering Escherichia coli for improved ethanol production from gluconate. J Biotechnol 168:101–106. doi:10.1016/j.jbiotec.2013.07.033

    CAS  PubMed  Google Scholar 

  • Hitzeman RA, Hagie FE, Hayflick JS, Chen CY, Seeburg PH, Derynck R (1982) The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucleic Acids Res 10:7791–7808. doi:10.1093/nar/10.23.7791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14:261–269. doi:10.1016/j.ymben.2011.09.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hohmann S, Mager WH (2003) Yeast stress responses. Springer, New York

    Google Scholar 

  • Holland JP, Holland MJ (1980) Structural comparison of two nontandemly repeated yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 255:2596–2605, PMID: 6244283

    CAS  PubMed  Google Scholar 

  • Holland MJ, Holland JP, Thill GP, Jackson KA (1981) The primary structures of two yeast enolase genes. Homology between the 5ʹ noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 256:1385–1395, PMID: 6256394

    CAS  PubMed  Google Scholar 

  • Jandt U, You C, Zhang YH-P, Zeng A-P (2013) Compartmentalization and metabolic channeling for multienzymatic biosynthesis: practical strategies and modeling approaches. Adv Biochem Eng Biotechnol 137:41–65. doi:10.1007/10_2013_221

    CAS  PubMed  Google Scholar 

  • Jeon BY, Park DH (2010) Improvement of ethanol production by electrochemical redox coupling of Zymomonas mobilis and Saccharomyces cerevisiae. J Microbiol Biotechnol 20:94–100. doi:10.4014/jmb.0904.04029

    CAS  PubMed  Google Scholar 

  • Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220. doi:10.1038/msb.2008.57

    PubMed Central  PubMed  Google Scholar 

  • Johansson TB, Kelly H, Reddy AKN, Williams RH (1993) Renewable fuels and electricity for a growing world economy—defining and achieving the potential. In: Johansson TB, Kelly H, Reddy AKN, Williams RH (eds) Renewable energy: sources for fuels and electricity. Island Press, Washington, DC, pp 1–71

    Google Scholar 

  • Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod 20:103–110. doi:10.1016/j.indcrop.2003.12.015

    Google Scholar 

  • Kawasaki G, Fraenkel DG (1982) Cloning of yeast glycolysis genes by complementation. Biochem Bioph Res Co 108:1107–1122. doi:10.1016/0006-291X(82)92114-3

    CAS  Google Scholar 

  • Kellermann E, Seeboth PG, Hollenberg CP (1986) Analysis of the primary structure and promoter function of a pyruvate decarboxylase gene (PDC1) from Saccharomyces cerevisiae. Nucleic Acids Res 14:8963–8977. doi:10.1093/nar/14.22.8963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khattak WA, Ul-Islam M, Park JK (2012) Prospects of reusable endogenous hydrolyzing enzymes in bioethanol production by simultaneous saccharification and fermentation. Korean J Chem Eng 29:1467–1482. doi:10.1007/s11814-012-0174-1

    CAS  Google Scholar 

  • Khattak WA, Kang M, Ul-Islam M, Park JK (2013a) Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth. Bioprocess Biosyst Eng 36:737–347. doi:10.1007/s00449-013-0899-1

    CAS  PubMed  Google Scholar 

  • Khattak WA, Khan T, Ha JH, Ul-Islam M, Kang MK, Park JK (2013b) Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation. Enzyme Microb Technol 53:322–330. doi:10.1016/j.enzmictec.2013.07.004

    CAS  PubMed  Google Scholar 

  • Khattak WA, Ul-Islam M, Ullah MW, Yu B, Khan S, Park JK (2014) Yeast cell-free enzyme system for bioethanol production at elevated temperature. Process Biochem 49:357–364. doi:10.1016/j.procbio.2013.12.019

    CAS  Google Scholar 

  • Kim TW, Chokhawala H, Hess M, Dana CM, Baer Z, Sczyrba A, Rubin EM, Blanch HW, Clark DS (2011) High-throughput in vitro glycoside hydrolase (HIGH) screening for enzyme discovery. Angew Chem Int Ed Engl 50:11215–11218. doi:10.1002/anie.201104685

    CAS  PubMed  Google Scholar 

  • Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA (2009) Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 392:319–333. doi:10.1016/j.jmb.2009.03.056

    CAS  PubMed  Google Scholar 

  • Kopperschläger G, Heinisch JJ (1997). Phosphofructokinase. In: Zimmermann FK and Entian K-D (ed) Yeast sugar metabolism. Biochemistry, Genetics, Biotechnology, and Applications, Technomic, Lancaster, PA. pp 97–118.

  • Kourkoutas Y, Bekatorou A, Banatb IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 2:377–397. doi:10.1016/j.fm.2003.10.005

    Google Scholar 

  • Lam KS, Wassink JWDG (1990) Enzymatic digestion of spent yeast cells for nutrient recycling in inulase production. J Ind Microbiol 6:207–210. doi:10.1007/BF01577697

    CAS  Google Scholar 

  • Le Borgne S (2012) Genetic engineering of industrial strains of Saccharomyces cerevisiae. Methods Mol Biol 824:451–465. doi:10.1007/978-1-61779-433-9_24

    PubMed  Google Scholar 

  • Liu D, Zeng X-A, Sun D-W, Han Z (2013) Disruption and protein release by ultrasonication of yeast cells. Innov Food Sci Emerg 18:132–137. doi:10.1016/j.ifset.2013.02.006

    CAS  Google Scholar 

  • Ljungcrantz P, Carlsson H, Mansson MO, Buckel P, Mosbach K, Bulow L (1989) Construction of an artificial bifunctional enzyme, beta-galactosidase/galactose dehydrogenase, exhibiting efficient galactose channeling. Biochemistry 28:8786–8792. doi:10.1021/bi00448a016

    CAS  PubMed  Google Scholar 

  • Lobo Z (1984) Saccharomyces cerevisiae aldolase mutants. J Bacteriol 160:222–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lobo Z, Maitra PK (1977) Resistance to 2-deoxyglucose in yeast: a direct selection of mutants lacking glucose-phosphorylating enzymes. Mol Gen Genet 157:297–300. doi:10.1007/BF00268666

    CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, P Matsudaira, Baltimore D, James Darnell (2000) Molecular cell biology. 4th Edition. New York: W. H. Freeman. Section 5.2, Purification of cells and their parts

  • Lu C (2011) Butanol production from lignocellulosic feedstocks by acetone-butanol-ethanol fermentation with integrated product recovery. The Ohio State University, Dissertation

    Google Scholar 

  • Lu G, Dobritzsch D, Baumann S, Schneider G, Konig S (2000) The structural basis of substrate activation in yeast pyruvate decarboxylase. A crystallographic and kinetic study. Eur J Biochem 267:861–868. doi:10.1046/j.1432-1327.2000.01070.x

    CAS  PubMed  Google Scholar 

  • Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci USA 97:559–564. doi:10.1073/pnas.97.2.559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mager WH, Winderickx J (2005) Yeast as a model for medical and medicinal research. Trends Pharmacol Sci 26:265–273. doi:10.1016/j.tips.2005.03.004

    CAS  PubMed  Google Scholar 

  • Mai NL, Kim SH, Ha SH, Shin HS, Koo Y-M (2013) Selective recovery of acetone-butanol-ethanol from aqueous mixture by pervaporation. Korean J Chem Eng 30:1804–1809. doi:10.1007/s11814-013-0116-6

    CAS  Google Scholar 

  • Maitra PK, Lobo Z (1977) Yeast pyruvate kinase: a mutant from catalytically insensitive to fructose 1,6-bisphosphate. Eur J Biochem 78:353–360. doi:10.1111/j.1432-1033.1977.tb11747.x

    CAS  PubMed  Google Scholar 

  • Malilas W, Kang SW, Kim SB, Yoo HY, Chulalaksananukul W, Kim SW (2013) Lipase from Penicillium camembertii KCCM 11268: optimization of solid state fermentation and application to biodiesel production. Korean J Chem Eng 30:405–512. doi:10.1007/s11814-012-0132-y

    CAS  Google Scholar 

  • Mansson MO, Siegbahn N, Mosbach K (1983) Site-to-site directed immobilization of enzymes with bis-NAD analogues. Proc Natl Acad Sci USA 80:1487–1491. doi:10.1073/pnas.80.6.1487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martz E (1966) A centrifuge for rapid concentration of large fragile cells without extensive lysis. J Protozool 13:380–382. doi:10.1111/j.1550-7408.1966.tb01924.x

    CAS  PubMed  Google Scholar 

  • Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase–nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron: Asymmetry 17:320–323. doi:10.1016/j.tetasy.2006.01.020

    CAS  Google Scholar 

  • McAlister L, Holland MJ (1982) Targeted deletion of a yeast enolase structural gene Identification and isolation of yeast enolase isozymes. J Biol Chem 257:7181–7188, PMID: 6282834

    CAS  PubMed  Google Scholar 

  • McAlister L, Holland MZ (1985) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15019–15027. doi:10.1371/journal.pgen.1003871

    CAS  PubMed  Google Scholar 

  • McLain AL, Szweda PA, Szweda LI (2011) Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 45(1):29–36. doi:10.3109/10715762.2010.534163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melzoch K, Rychtera M, Hábová V (1994) Effect of immobilization upon the properties and behaviour of Saccharomyces cerevisiae cells. J Biotechnol 32:59–65. doi:10.1016/0168-1656(94)90120-1

    CAS  Google Scholar 

  • Meynial SI, Forchhammer N, Croux C, Girbal L, Soucaille P (2007) Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab Eng 9:152–159. doi:10.1016/j.ymben.2006.09.002

    Google Scholar 

  • Moehlenbrock MJ, Toby TK, Waheed A, Minteer SD (2010) Metabolon catalyzed pyruvate/air biofuel cell. J Am Chem Soc 132:6288–6289. doi:10.1021/ja101326b

    CAS  PubMed  Google Scholar 

  • Moore PA, Sagliocco FA, Wood RM, Brown AJP (1991) Yeast glycolytic mRNAs are differentially regulated. Mol Cell Biol 11:5330–5337. doi:10.1128/MCB.11.10.5330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris CN, Ainsworth S, Kinderlerer J (1986) The regulatory properties of yeast pyruvate kinase. Effect of fructose 1,6-bisphosphate. Biochem J 234:691–698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murtas G, Kuruma Y, Bianchini P, Diaspro A, Luisi PL (2007) Protein synthesis in liposomes with a minimal set of enzymes. Biochem Biophys Res Commun 363:12–17. doi:10.1016/j.bbrc.2007.07.201

    CAS  PubMed  Google Scholar 

  • Najafpour G, Younesi H, Ismail KSK (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour Technol 92:251–260. doi:10.1016/j.biortech.2003.09.009

    CAS  PubMed  Google Scholar 

  • Nishizawa M, Araki R, Teranishi Y (1989) Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol Cell Biol 9:442–451. doi:10.1128/MCB.9.2.442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Norton S, D’Amore T (1994) Physiological effects of yeast cell immobilization: applications for brewing. Enzym Microb Tech 16:365–375. doi:10.1007/s10482-013-9978-1

    CAS  Google Scholar 

  • Pancholi V (2001) Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 58:902–920, PMID: 11497239

    CAS  PubMed  Google Scholar 

  • Panesar PS, Marwaha SS, Kumar H (2010) Enzymes in food processing: fundamentals and potential applications. IK International Publishing House, New Delhi, p 11

    Google Scholar 

  • Panke S, Held M, Wubbolts M (2004) Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr Opin Biotechnol 15:272–279. doi:10.1016/j.copbio.2004.06.011

    CAS  PubMed  Google Scholar 

  • Park N, Um SH, Funabashi H, Xu J, Luo D (2009) A cell-free protein-producing gel. Nat Mater 8:432–437. doi:10.1038/nmat2419

    CAS  PubMed  Google Scholar 

  • Parsons JB, Frank S, Bhella D, Liang M, Prentice MB, Mulvihill DP, Warren MJ (2010) Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol Cell 38:305–315. doi:10.1016/j.molcel.2010.04.008

    CAS  PubMed  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recy 50:1–39. doi:10.1016/j.resconrec.2006.05.007

    Google Scholar 

  • Prasetyo PJ, Park EY (2013) Waste paper sludge as a potential biomass for bio-ethanol production. Korean J Chem Eng 30:253–261. doi:10.1007/s11814-013-0003-1

    CAS  Google Scholar 

  • Prevost H, Divies C (1987) Fresh fermented cheese production with continuous pre-fermented milk by a mixed culture of mesophilic lactic streptococci entrapped in Ca-alginate. Biotechnol Lett 9:789–794. doi:10.1007/BF01028285

    CAS  Google Scholar 

  • Prevost H, Divies C (1992) Cream fermentation by a mixed culture of lactococci entrapped in two-layer calcium alginate gel beads. Biotechnol Lett 14:583–588

    CAS  Google Scholar 

  • Ratanapongleka K (2010) Recovery of biological products in aqueous two phase systems. Int J Chem Eng App 1:191–198. doi:10.1002/jsfa.3956

    CAS  Google Scholar 

  • Ravikumar R, Ranganathan BV, Chathoth KN, Gobikrishnan S (2013) Innovative and intensified technology for the biological pretreatment of agro waste for ethanol production. Korean J Chem Eng 30:1051–1057. doi:10.1007/s11814-012-0215-9

    CAS  Google Scholar 

  • Rodriguez A, De La Cera T, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355:625–631, PMID: 11311123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rollin JA, Tam KT, Zhang Y-HP (2013) New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chem 5:1708–1719. doi:10.1039/C3GC40625C

    Google Scholar 

  • Rupp S (2013) Next-generation bioproduction systems: cell-free conversion concepts for industrial biotechnology. Eng Life Sci 13:19–25. doi:10.1002/elsc.201100237

    CAS  Google Scholar 

  • Rutter WJ (1960) Aldolase. In: Boyer PD, Lardy HA, Myrbach K (eds) The enzymes 5. Academic, New York, pp 341–366

    Google Scholar 

  • Sampson EM, Bobik TA (2008) Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol 190:2966–2971. doi:10.1128/JB.01925-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santangelo GM, Tornow J (1990) Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites. Method Mol Cell Biol 10:859–862. doi:10.1128/MCB.10.2.859

    CAS  Google Scholar 

  • Saptoro A, Herng MTH, Teng ELW (2014) Oxygen transfer to cassava starch solutions in an aerated, well-mixed bioreactor: experimental and mass transfer studies. Korean J Chem Eng. doi:10.1007/s11814-013-0251-0

    Google Scholar 

  • Scott EW, Baker HV (1993) Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Method Mol Cell Biol 13:543–550. doi:10.1128/MCB.13.1.543

    CAS  Google Scholar 

  • Seeboth PG, Bohnsack K, Hollenberg CP (1990) pdc1(0) mutants of Saccharomyces cerevisiae give evidence for an additional structural PDC gene: cloning of PDC5, a gene homologous to PDC1. J Bacteriol 172:678–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selwood T, Jaffe EK (2011) Dynamic dissociating homo-oligomers and the control of protein function. Arch Biochem Biophys 519:131–143. doi:10.1016/j.abb.2011.11.020

    PubMed Central  PubMed  Google Scholar 

  • Sergienko EA, Jordan F (2002) New model for activation of yeast pyruvate decarboxylase by substrate consistent with the alternating sites mechanism: demonstration of the existence of two active forms of the enzyme. Biochemistry 41:3952–3967. doi:10.1021/bi011860a

    CAS  PubMed  Google Scholar 

  • Shapouri H, James D, Michael W (2002) The energy balance of corn ethanol: an update. United States Department of Agriculture, Report No, 55

    Google Scholar 

  • Sheng J, Huang L, Zhu X, Cai J, Zhinan X (2014) Reconstitution of the peptidoglycan cytoplasmic precursor biosynthetic pathway in cell-free system and rapid screening of antisense oligonucleotides for Mur enzymes. Appl Microbiol Biotechnol 98:1785–1794. doi:10.1007/s00253-013-5467-8

    CAS  PubMed  Google Scholar 

  • Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gels. J Food Sci 58:557–561. doi:10.1111/j.1365-2621.1993.tb04323.x

    Google Scholar 

  • Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755. doi:10.1038/90802

    CAS  PubMed  Google Scholar 

  • Shimono K, Goto M, Kikukawa T, Miyauchi S, Shirouzu M, Kamo N, Yokoyama S (2009) Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid. Protein Sci 18:2160–2171. doi:10.1002/pro.230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirsat SP, Dawande SD, Kakade SS (2013) Simulation and optimization of extractive distillation sequence with pre-separator. Korean J Chem Eng 30:2163–2169. doi:10.1007/s11814-013-0175-8

    CAS  Google Scholar 

  • Simpson RJ (2011) Disruption of cultured cells by nitrogen cavitation. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5513

    PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648. doi:10.1016/S1097-2765(00)80064-7

    CAS  PubMed  Google Scholar 

  • Steenson LR, Klaenhammer TR, Swaisgood HE (1987) Calcium alginate-immobilized cultures of lactic streptococci are protected from attack by lytic bacteriophage. J Dairy Sci 70:1121–1127. doi:10.3168/jds.S0022-0302(87)80121-2

    CAS  PubMed  Google Scholar 

  • Takamitsu I, Izumida H, Akagi Y, Sakamoto M (1993) Continuous ethanol fermentation in molasses medium using Zymomonas mobilis immobilized in photo-cross linkable resin gels. J Ferment Bioeng 75:32–35. doi:10.1016/0922-338X(93)90174-7

    Google Scholar 

  • Taskova RM, Zorn H, Krings U, Bouws H, Berger RG (2006) A comparison of cell wall disruption techniques for the isolation of intracellular metabolites from Pleurotus and Lepista sp. J Biosci 61:347–350

    CAS  Google Scholar 

  • Tekamp-Olson P, Najarian R, Burke RL (1988) The isolation, characterization and nucleotide sequence of the phosphoglucoisomerase gene of Saccharomyces cerevisiae. Gene 73:153–161. doi:10.1016/0378-1119(88)90321-6

    CAS  PubMed  Google Scholar 

  • ter Schure EG, Flikweert MT, van Dijken JP, Pronk JT, Verrips CT (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microb 64:1303–1307

    Google Scholar 

  • Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329. doi:10.1046/j.1432-1327.2000.01527.x

    CAS  PubMed  Google Scholar 

  • Tran L, Broadhurst RW, Tosin M, Cavalli A, Weissman KJ (2010) Insights into protein–protein and enzyme-substrate interactions in modular polyketide synthases. Chem Biol 17:705–716. doi:10.1016/j.chembiol.2010.05.017

    CAS  PubMed  Google Scholar 

  • Trott A, Morano KA (2003) The yeast response to heat shock. In: Hohmann S, Mager WH (eds) Yeast Stress Responses. Springer, NewYork, pp 71–119

    Google Scholar 

  • Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK (2014) Bio-ethanol production through simultaneous saccharification and fermentation using an encapsulated reconstituted cell-free enzyme system. Biochem Eng J 91:110–119. doi:10.1016/j.bej.2014.08.006

    CAS  Google Scholar 

  • van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. A Van Leeuw 63:343–352. doi:10.1007/BF00871229

    Google Scholar 

  • van Dongen S, Nallani M, Cornelissen J, Nolte R, van Hest J (2009) A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chemistry 15:1107–1114. doi:10.1002/chem.200802114

    PubMed  Google Scholar 

  • Vijayakrishnan S, Kelly S, Gilbert R, Callow P, Bhella D, Forsyth T, Lindsay J, Byron O (2010) Solution structure and characterisation of the human pyruvate dehydrogenase complex core assembly. J Mol Biol 399:71–93. doi:10.1016/j.jmb.2010.03.043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh RB, Kawasaki G, Fraenkel DG (1983) Cloning of genes that complement yeast hexokinase and glucokinase mutants. J Bacteriol 154:1002–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F-S, Li C-C, Lin Y-S, Lee W-C (2013) Enhanced ethanol production by continuous fermentation in a two-tank system with cell recycling. Process Biochem 48:1425–1428. doi:10.1016/j.procbio.2013.06.023

    CAS  Google Scholar 

  • Welch P, Scopes RK (1985) Studies on cell-free metabolism: ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J Biotechnol 2:257–273. doi:10.1016/0168-1656(85)90029-X

    CAS  Google Scholar 

  • Wernick DG, Liao JC (2013) Protein-based biorefining: metabolic engineeringfor production of chemicals and fuel with regeneration of nitrogen fertilizers. Appl Microbiol Biotechnol 97:1397–1406. doi:10.1007/s00253-012-4605-z

    CAS  PubMed  Google Scholar 

  • Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I (2009) Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol 4:249–254. doi:10.1038/nnano.2009.50

    CAS  PubMed  Google Scholar 

  • Won KY, Kim YS, Oh KK (2012) Comparison of bio-ethanol production of simultaneoussaccharification and fermentation and separation hydrolysis and fermentationfrom cellulose-rich barley straw. Korean J Chem Eng 29:1341–1346. doi:10.1007/s11814-012-0019-y

    CAS  Google Scholar 

  • Xu J, Taylor KB (1993) Characterization of ethanol production from xylose and xylitol by a cell-free Pachysolen tannophilus system. Appl Environ Microbiol 59:231–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeng ALY, Ab Kadir MS, Ghazali HM, Abd Rahman RNZR (2013) A comparative study of extraction techniques for maximum recovery of glutamate decarboxylase (GAD) from Aspergillus oryzae NSK. BMC Res Notes 6:526. doi:10.1186/1756-0500-6-526

    Google Scholar 

  • Ylitervo P, Franzén CJ, Taherzadeh MJ (2011) Ethanol production at elevated temperatures using encapsulation of yeast. J Biotechnol 156:22–29. doi:10.1016/j.jbiotec.2011.07.018

  • You C, Zhang YHP (2012) Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Synth Biol 2:102–110. doi:10.1021/sb300068g

    PubMed  Google Scholar 

  • You C, Zhang YH (2013) Cell-free biosystems for biomanufacturing. Adv Biochem Eng Biotechnol 131:89–119. doi:10.1007/10_2012_159

    PubMed  Google Scholar 

  • You C, Myung S, Zhang YHP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem Int Edit 51:8787–8790. doi:10.1002/anie.201202441

    CAS  Google Scholar 

  • Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5:130–136. doi:10.1016/S1367-5931(00)00181-2

    CAS  PubMed  Google Scholar 

  • Zhang Y-HP (2009) A sweet out-of-the-box solution to the hydrogen economy: Is the sugar-powered car science fiction? Energy Environ Sci 2:272–282. doi:10.1039/B818694D

    CAS  Google Scholar 

  • Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663–677. doi:10.1002/bit.22630

    CAS  PubMed  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824. doi:10.1002/bit.20282

    CAS  PubMed  Google Scholar 

  • Zhu Z, Tam TK, Zhang Y-HP (2013) Cell-free biosystems in the production of electricity and bioenergy. Adv Biochem Eng Biotechnol 137:125–152. doi:10.1007/10_2013_201

    PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the Basic Research Program through the National Research Foundation (NRF) of Korea founded by the Ministry of Education, Science and Technology (no. 2011-0016965). The research was additionally supported by the BK21 plus (2014–2019) Korea (21A.2013-1800001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Kon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattak, W.A., Ullah, M.W., Ul-Islam, M. et al. Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective. Appl Microbiol Biotechnol 98, 9561–9578 (2014). https://doi.org/10.1007/s00253-014-6154-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6154-0

Keywords

Navigation