Skip to main content
Log in

In silico analysis of bioethanol production from glucose/xylose mixtures during fed-batch fermentation of co-culture and mono-culture systems

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study presents a detailed in silico analysis of bioethanol production from glucose/xylose mixtures of various compositions by fed-batch co-culture and mono-culture fermentation of specialized microbes. The mono-culture consists of recombinant Saccharomyces cerevisise that can metabolize both hexose and pentose sugars while the co-culture system consists of substrate-selective microbes. Dynamic flux balance models based on available genome-scale reconstructions of the microorganisms have been used to analyze bioethanol production in fed-batch culture with constant feed rates and the maximization of ethanol productivity is addressed by computing optimal aerobic-anaerobic switching times. The simulation results clearly point to the superior performance of fed-batch fermentation of microbial co-culture against fed-batch fermentation of mono-culture for bioethanol production from glucose/xylose mixtures. A set of potential genetic engineering strategies for enhancement of S. cerevisiae and Escherichia coli strains performance have been identified. Such in silico predictions using genome-scale models provide valuable guidance for conducting in vivo metabolic engineering experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dien, B. S., M. A. Cotta, and T. W. Jeffries (2003) Bacteria engineered for fuel ethanol production: Current status. Appl. Microbiol. Biotechnol. 63: 258–266.

    Article  CAS  Google Scholar 

  2. Ghim, C. M., T. Kim, R. J. Mitchell, and S. K. Lee (2010) Synthetic biology for biofuels: Building designer microbes from the scratch. Biotechnol. Bioproc. Eng. 15: 11–21.

    Article  CAS  Google Scholar 

  3. Krahulec, S., B. Petschacher, M. Wallner, K. Longus, M. Klimacek, and B. Nidetzky (2010) Fermentation of mixed glucosexylose substrates by engineered strains of Saccharomyces cerevisiae: Role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb. Cell Fact. 9: 16.

    Article  Google Scholar 

  4. Ma, Y., H. Dong, S. Zou, J. Hong, and M. Zhang (2012) Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions. Biotechnol. Lett. 34: 1297–1304.

    Article  CAS  Google Scholar 

  5. Bader, J., E. M. Gerlach, M. K. Popovic, R. Bajpai, and U. Stahl (2010) Relevance of microbial coculture fermentations in biotechnology. J. Appl. Microbiol. 109: 371–387.

    Article  CAS  Google Scholar 

  6. Chen, Y. (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: A systematic review. J. Ind. Microbiol. Biotechnol. 38: 581–597.

    Article  CAS  Google Scholar 

  7. Kim, T. Y., S. B. Sohn, Y. B. Kim, W. J. Kim, and S. Y. Lee (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr. Opin. Biotechnol. 23: 617–623.

    Article  CAS  Google Scholar 

  8. Mahadevan, R., A. P. Burgard, I. Famili, S. V. Dien, and C. H. Schilling (2005) Applications of metabolic modelling to drive bioprocess development for the production of value-added chemicals. Biotechnol. Bioproc. Eng. 10: 408–417.

    Article  CAS  Google Scholar 

  9. Varma, A. and B. O. Palsson (1994) Metabolic flux balancing: Basic concepts, scientific and practical use. Nat. Biotechnol. 12: 994–998.

    Article  CAS  Google Scholar 

  10. Orth, J. D., I. Thiele, and B. O. Palsson (2010) What is flux balance analysis? Nat. Biotechnol. 28: 245–248.

    Article  CAS  Google Scholar 

  11. Kauffman, K. J., P. Prakash, and J. S. Edwards (2003) Advances in flux balance analysis. Curr. Opin. Biotechnol. 14: 491–496.

    Article  CAS  Google Scholar 

  12. Martinez, I. B., A. G. Garcia, E. S. Manjarrez, and J. S. A. Barradas (2011) A simple metabolic flux balance analysis of biomass and bioethanol production in Saccharomyces cerevisiae fedbatch cultures. Biotechnol. Bioproc. Eng. 16: 13–22.

    Article  Google Scholar 

  13. Mahadevan, R., J. S. Edwards, and F. J. Doyle (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83: 1331–1340.

    Article  CAS  Google Scholar 

  14. Mahadevan, R. and M. A. Henson (2012) Genome-based modelling and design of metabolic interactions in microbial communities. Comput. Struct. Biotechnol. J. 3: e201210008.

    Article  Google Scholar 

  15. Antoniewicz, M. R. (2013) Dynamic metabolic flux analysistools for probing transient states of metabolic networks. Curr. Opin. Biotechnol. 24: 973–978.

    Article  CAS  Google Scholar 

  16. Hjersted, J. L. and M. A. Henson (2006) Optimization of fedbatch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Biotechnol. Prog. 22: 1239–1248.

    Article  CAS  Google Scholar 

  17. Hjersted, J. L., M. A. Henson, and R. Mahadevan (2007) Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol. Bioeng. 97: 1190–1204.

    Article  CAS  Google Scholar 

  18. Hjersted, J. L. and M. A. Henson (2009) Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. IET Syst. Biol. 3: 167–179.

    Article  CAS  Google Scholar 

  19. Hanly, T. J. and M. A. Henson (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 108: 376–385.

    Article  CAS  Google Scholar 

  20. Hanly, T. J., M. Urello, and M. A. Henson (2012) Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl. Microbiol. Biotechnol. 93: 2529–2541.

    Article  CAS  Google Scholar 

  21. Hanly, T. J. and M. A. Henson (2013) Dynamic metabolic modeling of a microaerobic yeast co-culture: Predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol. Biofuels 6: 44.

    Article  CAS  Google Scholar 

  22. Lisha, K. P. and D. Sarkar (2014) Dynamic flux balance analysis of batch fermentation: Effect of genetic manipulations on ethanol production. Bioproc. Biosyst. Eng. 37: 617–627.

    Article  CAS  Google Scholar 

  23. Bro, C., B. Regenberg, J. Forster, and J. Nielsen (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8: 102–111.

    Article  CAS  Google Scholar 

  24. Duarte, N. C., M. J. Herrgard, and B. O. Palsson (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14: 1298–1309.

    Article  CAS  Google Scholar 

  25. Feist, A. M. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3: 1–1.

    Article  Google Scholar 

  26. Schuetz, R., L. Kuepfer, and U. Sauer (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3: 1–9.

    Article  Google Scholar 

  27. Edwards, J. S., R. U. Ibarra, and B. O. Palsson (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125–130.

    Article  CAS  Google Scholar 

  28. Gianchandani, E. P., M. A. Oberhardt, A. P. Burgard, C. D. Maranas, and J. A. Papin (2008) Predicting biological system objectives de novo from internal state measurements. BMC Bioinformatics 9: 43.

    Article  Google Scholar 

  29. Becker, S. A., A. M. Feist, M. L. Mo, G. Hannum, B. O. Palsson, and M. J. Herrgard (2007) Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox. Nat. Protoc. 2: 727–738.

    Article  CAS  Google Scholar 

  30. Chen, J., W. Zhang, L. Tan, Y. Wang, and G. He (2009) Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering. Biotechnol. Adv. 27: 593–598.

    Article  CAS  Google Scholar 

  31. Liu, T. and C. Khosla (2010) Genetic engineering of Escherichia coli for biofuel production. Annu. Rev. Genet. 44: 53–69.

    Article  CAS  Google Scholar 

  32. Kim, J. and J. L. Reed (2010) OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol. 4: 53.

    Article  Google Scholar 

  33. Kuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. vanDijken, and J. T. Pronk (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925–934.

    Article  CAS  Google Scholar 

  34. Eslamloueyan, R. and P. Setoodeh (2011) Optimization of fedbatch recombinant yeast fermentation for ethanol production using a reduced dynamic flux balance model based on artificial neural networks. Chem. Eng. Comm. 198: 1309–1338.

    Article  CAS  Google Scholar 

  35. Guo, Z., L. Zhang, Z. Ding, and G. Shi (2011) Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab. Eng. 13: 49–59.

    Article  CAS  Google Scholar 

  36. Trinh, C. T., P. Unrean, and F. Srienc (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 74: 3634–3643.

    Article  CAS  Google Scholar 

  37. Eiteman, M. A., S. A. Lee, and E. Altman (2008) A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2: 3.

    Article  Google Scholar 

  38. Kanehisa, M. and S. Goto (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27–30.

    Article  CAS  Google Scholar 

  39. Govindaswamy, S. and L. M. Vane (2007) Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresour. Technol. 98: 677–685.

    Article  CAS  Google Scholar 

  40. Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttila (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 3: 236–249.

    Article  CAS  Google Scholar 

  41. Roca, C., J. Nielsen, and L. Olsson (2003) Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl. Env. Microbiol. 69: 4732–4736.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisha, K.P., Sarkar, D. In silico analysis of bioethanol production from glucose/xylose mixtures during fed-batch fermentation of co-culture and mono-culture systems. Biotechnol Bioproc E 19, 879–891 (2014). https://doi.org/10.1007/s12257-014-0320-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0320-1

Keywords

Navigation