Skip to main content
Log in

Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

An Erratum to this article was published on 03 April 2012

Abstract

Three xylose-fermenting recombinant Zymomonas mobilis strains containing different Peno-talB/tktA operon terminators were engineered. Each showed similar levels of foreign protein expression and xylose fermentation performance. Strain CP4-P2-1 was further used to compare the glucose/xylose co-fermentation under various cultivation environments to improve the efficiency of the process. Optimal co-fermentation was achieved at 30–34 °C and pH 5.5 using xylose-grown preculture cells giving 20.5 g ethanol/l, ethanol productivity of 0.43 g/l h and ethanol yield of 0.44 g/g at 48 h. Adverse culture conditions mainly influenced the efficiency of xylose fermentation but not glucose fermentation. The key factors affecting co-fermentation were also explored at the molecular level. This study provides valuable insights into the effective harnessing of biomass resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal M, Mao Z, Chen RR (2011) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108:777–785. doi:10.1002/bit.23021

    Article  PubMed  CAS  Google Scholar 

  • Altintas MM, Eddy CK, Zhang M, McMillan JD, Kompala DS (2006) Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis. Biotechnol Bioeng 94:273–295. doi:10.1002/bit.20843

    Article  PubMed  CAS  Google Scholar 

  • Bajpai PK, Margaritis A (1986) Effect of temperature and pH on immobilized Zymomonas mobilis for continuous production of ethanol. Biotechnol Bioeng 28:824–828. doi:10.1002/bit.260280608

    Article  PubMed  CAS  Google Scholar 

  • Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98:2824–2828. doi:10.1016/j.biortech.2006.08.026

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Zhang M, McMillan JD, Kompala DS (2002) Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures. Appl Biochem Biotechnol 98–100:341–355. doi:10.1385/ABAB:98-100:1-9:341

    Article  PubMed  Google Scholar 

  • Jeon YJ, Svenson CJ, Rogers PL (2005) Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. FEMS Microbiol Lett 244:85–92. doi:S0378-1097(05)00039-X

    Article  PubMed  CAS  Google Scholar 

  • Joachimsthal EL, Rogers PL (2000) Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl Biochem Biotechnol 84–86:343–356. doi:10.1385/ABAB:84-86:1-9:343

    Article  PubMed  Google Scholar 

  • Kim IS, Barrow KD, Rogers PL (2000) Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4 (pZB5). Appl Environ Microbiol 66:186–193. doi:10.1128/AEM.66.1.186-193.2000

    Article  PubMed  CAS  Google Scholar 

  • King F, Hossain M (1982) The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotechnol Lett 4:531–536. doi:10.1007/BF00131577

    Article  CAS  Google Scholar 

  • Lawford HG, Rousseau JD (2001) Fermentation performance assessment of a genomically integrated xylose-utilizing recombinant of Zymomonas mobilis 39676. Appl Biochem Biotechnol 91–93:117–131. doi:10.1385/ABAB:91-93:1-9:117

    Article  PubMed  Google Scholar 

  • Okamoto T, Nakamura K (1992) Simple and highly efficient transformation method for Zymomonas mobilis: electroporation. Biosci Biotech Biochem 56:833. doi:10.1271/bbb.56.833

    Article  CAS  Google Scholar 

  • Panesar PS, Marwaha SS, Kennedy JF (2007) Comparison of ethanol and temperature tolerance of Zymomonas mobilis strain in glucose and molasses medium. Indian J Biotechnol 6:74–77

    CAS  Google Scholar 

  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Biofuels 108:263–288. doi:10.1007/10_2007_060

    Article  CAS  Google Scholar 

  • Widiastuti H, Kim JY, Selvarasu S, Karimi IA, Kim H, Seo JS, Lee DY (2011) Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnol Bioeng 108:655–665. doi:10.1002/bit.22965

    Article  PubMed  CAS  Google Scholar 

  • Yanase H, Sato D, Yamamoto K, Matsuda S, Yamamoto S, Okamoto K (2007) Genetic engineering of Zymobacter palmae for production of ethanol from xylose. Appl Environ Microbiol 73:2592–2599. doi:10.1128/AEM.02302-06

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243. doi:10.1126/science.267.5195.240

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhua Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Dong, H., Zou, S. et al. Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions. Biotechnol Lett 34, 1297–1304 (2012). https://doi.org/10.1007/s10529-012-0897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0897-4

Keywords

Navigation