Skip to main content
Log in

A comparison of microbial leaching and chemical leaching of arsenic and heavy metals from mine tailings

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The aim of this research was to compare the efficiencies of microbial leaching and chemical leaching of As and heavy metals from mine tailings. A mixed culture of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans was used as a microbial lixiviant agent for microbial leaching, while sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) were used as the leachants for chemical leaching. The results showed that except for Zn, the microbial leaching achieved higher removal efficiencies than the chemical leaching with As, Cu, Mn, and Fe after 300 h of incubation. It was observed that 95% Mn, 38% Cu, 67% Zn, 41% As, and 47% Fe were removed from the mine tailings by the microbial leaching process. In chemical leaching, the addition of H2O2 enhanced the As removal efficiency significantly. The leaching with a solution of 2% H2SO4 yielded the higher removal efficiencies of Mn, Zn, As, and Fe in comparison to that with 1% H2SO4. A sequential extraction scheme was applied to determine the chemical forms of As and heavy metals in the mine tailings before and after the leaching processes. The results indicated that the chemical forms of heavy metals in the mine tailings affect significantly their extraction efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandl, H. (2001) Microbial leaching of metals. pp. 191–224. In: H. J. Rehm, G. Reed, A. Puhler, and P. Stadler (eds.). Biotechnology: Special processes. Wiley-VCH, Germany.

    Chapter  Google Scholar 

  2. Watling, H. R. (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides — A review. Hydrometall. 84: 81–108.

    Article  CAS  Google Scholar 

  3. Chen, S. Y. and J. G. Lin (2009) Enhancement of metal bioleaching from contaminated sediment using silver ion. J. Hazard. Mater. 161: 893–899.

    Article  CAS  Google Scholar 

  4. Olson, G. J., J. A. Brierley, and C. L. Brierley (2003) Bioleaching review. Part B. Progress in bioleaching: Applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 63: 249–257.

    Article  CAS  Google Scholar 

  5. Jerez, C. A. (2011) Bioleaching and biomining for industrial recovery of metals. pp. 717–728. In: M. Y. Murray (ed.). Comprehensive Biotechnology, Industrial biotechnology and commodity products. Elsevier, Spain.

    Google Scholar 

  6. Fu, B., H. Zhou, R. Zhang, and G. Qiu (2008) Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int. Biodeter. Biodeg. 62: 109–115.

    Article  CAS  Google Scholar 

  7. Zhang, Y.-S, W.-Q. Qin, J. Wang, S.-J. Zhen, C.-R. Yang, J.-W. Zhang, S.-S. Nai, and G.-Z Qiu (2008) Bioleaching of chalcopyrite by pure and mixed culture. Trans. Nonferrous Met. Soc. China 18: 1491–1496.

    Article  CAS  Google Scholar 

  8. Zhang, J., X. Zhang, Y. Ni, X. Yang, and H. Li (2007) Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Proc. Biochem. 42: 1265–1271.

    Article  CAS  Google Scholar 

  9. Qiu, M.-Q., S.-Y. Xiong, W.-M. Zhang, and G.-X Wang (2005) A comparision of bioleaching of chalcopyrite using pure culture or a mixed culture. Minerals Eng. 18: 987–990.

    Article  CAS  Google Scholar 

  10. Nguyen, V. K., M. H. Lee, H. J. Park, and J.-U. Lee (2014) Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. J. Ind. Eng. Chem. 21: 451–458.

    Article  Google Scholar 

  11. Liu, K., Q. Chen, and H. Hu (2009) Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore. Hydrometallurgy 98: 281–286.

    Article  CAS  Google Scholar 

  12. Silva, J. E., D. Soares, A. P. Paiva, J. A. Labrincha, and F. Castro (2005) Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media. J. Hazard. Mater. B121: 195–202.

    Article  Google Scholar 

  13. Jha, M. K., V. Kumar, and R. J. Singh (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Resour. Conserv. Recy. 33: 1–22.

    Article  Google Scholar 

  14. Xu, W. L., Y. Z. Li, Q. S. Zhang, and H. S. Zhu (2004) A selective, convenient, and efficient conversion of sulfides to sulfoxides. Synthesis 2: 227–232.

    Article  Google Scholar 

  15. Bosshard, P. P., R. Bachofen, and H. Brandl (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ. Sci. Technol. 30: 3066–3070.

    Article  CAS  Google Scholar 

  16. Brombacher, C., R. Bachofen, and H. Brandl (1998) Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Appl. Environ. Microbiol. 64: 1237–1241.

    CAS  Google Scholar 

  17. Wu, H.-Y. and Y.-P. Ting (2006) Metal extraction from municipal solid waste (MSW) incineration fly ash — chemical leaching and fungal bioleaching. Enz. Microb. Technol. 38: 839–847.

    Article  CAS  Google Scholar 

  18. Bayat, O., V. Arslan, and B. Bayat (2011) Use of Aspergillus niger in the bioleaching of colemanite for the production of boric acid. Electronic J. Biotechnol. 14: 1–10.

    Article  Google Scholar 

  19. Bankar, A., M. Winey, D. Prakash, A. R. Kumar, S. Gosavi, B. Kapadnis, and S Zinjarde (2012) Bioleaching of fly ash by the tropical marine yeast, Yarrowia lypolytica NCIM 3589. Appl. Biochem. Biotechnol. 168: 2205–2217.

    Article  CAS  Google Scholar 

  20. Bharadwaj, A. and Y.-P. Ting (2013) Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking. Bioresour. Technol. 130: 673–680.

    Article  CAS  Google Scholar 

  21. Tessier, A., P. G. C. Campbell, and M. Bisson (1979) Sequential extraction procedure for speciation of particulate trace metals. Anal. Chem. 51: 844–851.

    Article  CAS  Google Scholar 

  22. Ahn, J. S., Y. S. Park, J. Y. Kim, and K. W. Kim (2005) Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea. Environ. Geochem. Hlth. 27: 147–157.

    Article  CAS  Google Scholar 

  23. DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) Growth mediums of Acidithiobacillus spp.,. http://www.dsmz.de/microorganisms/html/ media/medium000271.html.

  24. NCIMB (National Collection of Industrial, Food and Marine Bacteria) NCIMB Culture Media v2.0. http://www.ncimb.com/.

  25. Visca, P., E. Bianchi, M. Polidoro, V. Buonfiglio, P. Valenti, and N. Orsi (1989) A new solid medium for isolating and enumerating Thiobacillus ferrooxidans. J. Gen. Appl. Microbiol. 35: 71–81.

    Article  CAS  Google Scholar 

  26. Chen, S. Y. and J. G. Lin (2001) Effect of substrate concentration on bioleaching of metal-contaminated sediment. J. Hazard. Mater. B82: 77–89.

    Article  Google Scholar 

  27. Silverman, M. P. and H. L. Ehrlich (1964) Microbial formation and degradation of minerals. Adv. Appl. Microbiol. 6: 181–183.

    Google Scholar 

  28. Free, M. L., T. Oolman, S. Nagpal, and D. A. Dahlstroom (1991) Bioleaching of sulphide ores-distinguishing between indirect and direct mechanisms. pp. 485–495. In: R. W. Smith, and M. Misra (Eds.). Mineral Bioprocessing. The Minerals, Metals and Materials Society, Warrendale

    Google Scholar 

  29. Lizama, H. M. and I. Suzuki (1991) Interaction of chalcopyrite and sphalerite with pyrite during leaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Can. J. Microbiol. 37: 304–311.

    Article  CAS  Google Scholar 

  30. Liu, Y.-G., M. Zhou, G.-M. Zeng, X. Li, W.-H. Xu, and T. Fan (2007) Effect of solid concentration on removal of heavy metals from mine tailings via bioleaching. J. Hazad. Mater. 141: 202–208.

    Article  CAS  Google Scholar 

  31. Liu, Y.-G., M. Zhou, G.-M. Zeng, X. Wang, X. Li, T. Fan, and W.-H. Xu (2008) Bioleaching of heavy metals from mine tailings by indigenous sulphur-oxidizing bacteria: Effects of substrate concentration. Bioresour. Technol. 99: 4124–4129.

    Article  CAS  Google Scholar 

  32. Bryan, C. G., K. B. Hallberg, and D. B. Johnson (2006) Mobilisation of metals in mine tailings at the abandoned Sao Domingos copper mine (Portugal) by indigenous acidophilic bacteria. Hydrometallurgy 83: 184–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Un Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.K., Lee, JU. A comparison of microbial leaching and chemical leaching of arsenic and heavy metals from mine tailings. Biotechnol Bioproc E 20, 91–99 (2015). https://doi.org/10.1007/s12257-014-0223-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0223-1

Keywords

Navigation