Skip to main content
Log in

Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A strict aerobic Acinetobacter baumannii YNWH 226, isolated from an activated sludge reactor treating textile wastewater, was able to grow on Congo red as the sole carbon source under aerobic conditions. The decolorization and TOC reduction efficiency were 99.1 and 93.72%, respectively. The effects of the Congo red concentration were studied. The environmental factors (i.e., pH, temperature and agitation speed) on the biodegradation of Congo red in aqueous phase were studied and evaluated using response surface methodology. The results indicated that when the Congo red concentration was 100 mg/L, the optimal decolorization conditions were as follows: 37°C, pH 7.0 and 180 rpm. The single A. baumannii YNWH 226 was able to form aromatic amines by reductive breakage of the azo bond and then oxidize them into non-toxic metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van der Zee, F. P., I. A. E. Bisschops, V. G. Blanchard, R. H. M. Bouwman, G. Lettinga, and J. A. Field (2003) The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Res. 37: 3098–3109.

    Article  Google Scholar 

  2. Elisangela, F., Z. Andrea, D. G. Fabio, R. de Menezes Cristiano, D. L. Regina, and C. P. Artur (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Internat. Biodeter. Biodegrad. 63: 280–288.

    Article  CAS  Google Scholar 

  3. Amar, T., K. Dayanand, J. Jyoti and G. Sanjay (2008) Kinetics and mechanism of Reactive red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim. Sloven ica. 55: 320–329.

    Google Scholar 

  4. Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2011) Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Institute Chem. Eng. 42: 138–157.

    Article  CAS  Google Scholar 

  5. Ayed, L., A. Mahdhi, A. Cheref, and A. Bakhrouf (2011) Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization. Desalinat. 274: 272–277.

    Article  CAS  Google Scholar 

  6. Zu, L., G. Li, J. An, J. Li, and T. An (2013) Kinetic optimization of biodegradation and debromination of 2,4,6-tribromophenol using response surface methodology. Internat. Biodeter. Biodegrad. 76: 18–23.

    Article  CAS  Google Scholar 

  7. Bhattacharya, S. S. and R. Banerjee (2008) Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology. Chemosphere 73: 81–85.

    Article  CAS  Google Scholar 

  8. Ghosal, D., A. Dutta, J. Chakraborty, S. Basu, and T. K. Dutta (2013) Characterization of the metabolic pathway involved in assimilation of acenaphthene in Acinetobacter sp. strain AGATW. Res. Microbiol. 164: 155–163.

    Article  CAS  Google Scholar 

  9. Lade, H. S., T. R. Waghmode, A. A. Kadam, and S. P. Govindwar (2012) Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungalbacterial consortium. Internat. Biodeter. Biodegrad. 72: 94–107.

    Article  CAS  Google Scholar 

  10. Fernando, E., T. Keshavarz, and G. Kyazze (2012) Enhanced biodecolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell. Internat. Biodeter. Biodegrad. 72: 1–9.

    Article  CAS  Google Scholar 

  11. Selvam, K., K. Swaminathan, and K.-S. Chae (2003) Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp.. Bioresour. Technol. 88: 115–119.

    Article  CAS  Google Scholar 

  12. McMullan, G., C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I. M. Banat, R. Marchant, and W. F. Smyth (2001) Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 56: 81–87.

    Article  CAS  Google Scholar 

  13. Lin, J., X. Zhang, Z. Li, and L. Lei (2010) Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour. Technol. 101: 34–40.

    Article  CAS  Google Scholar 

  14. Sarayu, K. and S. Sandhya (2009) Aerobic biodegradation pathway for remazol orange by Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 160: 1241–1253.

    Article  Google Scholar 

  15. Valli Nachiyar, C. and G. Suseela Rajakumar (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enz. Microbial. Technol. 36: 503–509.

    Article  Google Scholar 

  16. Ooi, T., T. Shibata, R. Sato, H. Ohno, S. Kinoshita, T. L. Thuoc, and S. Taguchi (2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: Functional expression and enzymatic characterization. Appl. Microbiol. Biotechnol. 75: 377–386.

    Article  CAS  Google Scholar 

  17. Chen, H., R.-F. Wang, and C. E. Cerniglia (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Exp. Purif. 34: 302–310.

    Article  CAS  Google Scholar 

  18. Nakanishi, M. (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J. Biol. Chem. 276: 46394–46399.

    Article  CAS  Google Scholar 

  19. Azadeh, T., I. Mina, and H. Kerdari (2013) Adsorption kinetics, thermodynamic studies, and high performance of CdO cauliflower- like nanostructure on the removal of Congo red from aqueous solution. J. Nanostruct. Chem. 1: 1–8.

    Google Scholar 

  20. Guz, N., E. Kocak, and N. Kilincer (2013) Molecular phylogeny of Trissolcus species (Hymenoptera: Scelionidae). Biochem. Syst. Ecol. 48: 85–91.

    Article  CAS  Google Scholar 

  21. Saitou, N. and M. Nei (1987) The neighbor joining method a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  Google Scholar 

  22. Midolo, P. D., J. Turnidge, J. R. Lambert and J. M. Bell (1995) Validation of a Modified Kirby-Bauer disk diffusion method for metronidazole susceptibility testing of helicobacter pylori. Diagnostic Microbiol. Infect. Disease 21: 135–140.

    Article  CAS  Google Scholar 

  23. Chen, B. Y. (2002) Understanding decolorization characteristics of reactive azo dyes by Pseudomonas. Proc. Biochem. 38: 437–446.

    Article  CAS  Google Scholar 

  24. Box, G. E. P. and D. W. Behnken (1960) Some new three level designs for the study of quantitative variables. Technomet. 2: 455–475.

    Article  Google Scholar 

  25. Hinkelmann, K. and O. Kempthorne (2007) Design and analysis of experiments. 2nd ed., pp. 29–58. John Wiley & Sons, Inc., Hoboken, NJ, USA.

    Google Scholar 

  26. Kim, J., K. J. Cho, G. Han, C. Lee, and S. Hwang (2013) Effects of temperature and pH on the biokinetic properties of thiocyanate biodegradation under autotrophic conditions. Water Res. 47: 251–258.

    Article  CAS  Google Scholar 

  27. Smith, M. G., T. A. Gianoulis, S. Pukatzki, J. J. Mekalanos, L. N. Ornston, M. Gerstein, and M. Snyder (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes & Development. 21: 601–614.

    Article  CAS  Google Scholar 

  28. Rainey, F. A., E. Lang, and E. Stackebrandt (1994) The phylogenetic structure of the genus Acinetobacter. FEMS Microbilol. 124: 349–354.

    Article  CAS  Google Scholar 

  29. Paterson, D. L. (2006) The epidemiological profile of infections with Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter Species. Clinical Infectious Diseases. 43: 43–48.

    Article  Google Scholar 

  30. Fournier, P. E. and H. Richet (2006) The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin. Infect. Diseases 42: 692–699.

    Article  Google Scholar 

  31. Giamarellou, H., A. Antoniadou, and K. Kanellakopoulou (2008) Acinetobacter baumannii: A universal threat to public health? Internat. J. Antimicrob. Agents. 32: 106–119.

    Article  CAS  Google Scholar 

  32. Cao, Y., Y. Hu, J. Sun, and B. Hou (2010) Explore various cosubstrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell. Bioelectrochem. 79: 71–76.

    Article  CAS  Google Scholar 

  33. Chang, J., C. Chou, Y. Lin, P. Lin, J. Ho and T. L. Hu (2001) Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res. 35: 2841–2850.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-an Ning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Xa., Yang, C., Wang, Y. et al. Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnol Bioproc E 19, 687–695 (2014). https://doi.org/10.1007/s12257-013-0729-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0729-y

Keywords

Navigation