Skip to main content
Log in

An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The gene coding for an azoreductase, designated as an azrA, was cloned by polymerase chain reaction amplification from the genomic DNA of Bacillus sp. strain B29 isolated from soil. The azrA encoded a protein of 208 amino acids with calculated molecular mass of 22,766 Da. The enzyme was heterologously expressed in Escherichia coli with a strong band of 23 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Purified recombinant AzrA was a homodimer with a native molecular mass of 48 kDa containing two molecules of flavin mononucleotide (FMN; oxidized). This activity was oxygen insensitive and was nicotinamide adenine dinucleotide (reduced form; NADH) dependent. Recombinant AzrA exhibited a broad pH stability between 6 and 10 with a temperature optimum of 60–80°C. The enzyme cleaved the model azo compound of methyl red [MR, 4′-(dimethylamino)-azobenzene-2-carboxylic acid] into 2-aminobenzoic acid and N, N′-dimethyl-p-phenylenediamine by ping-pong mechanism. The enzyme was not only able to decolorize MR but also able to decolorize sulfonated azo dyes such as Orange I and Acid Red 88.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology, vol 1, chapter 2.4. Wiley, New York

    Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  • Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characterization of the gene encoding azoreductase from Rhodobacter spaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Article  Google Scholar 

  • Blümel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphage kullae K24. Appl Microbiol Biotechnol 62:186–190

    Article  Google Scholar 

  • Blümel S, Knackmuss H-J, A Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brown D, Hamburger B (1987) The degradation of dyestuffs. Part III. Investigations of their ultimative biodegradability. Chemosphere 16:1553–1593

    Article  Google Scholar 

  • Chen H, Woug R-F, Cerriglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310

    Article  CAS  Google Scholar 

  • Chung KT (1983) The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat Res 114:269–281

    Article  CAS  Google Scholar 

  • Chung KT, Fulk GE, Andrews AW (1981) Mutagenicity testing of some commonly used dyes. Appl Environ Microbiol 42:641–648

    Article  CAS  Google Scholar 

  • Ghosh DK, Mandel A, Chaudhuri J (1992) Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1. FEMS Microbiol Lett 98:229–234

    Article  CAS  Google Scholar 

  • Ghosh D, Ghosh S, Sadhukhan P, Mandel A, Chaudhuri J (1993) Purification of two azoreductases from Escherichia coli K12. Indian J Exp Biol 31:951–954

    CAS  PubMed  Google Scholar 

  • Green FJ (1990) The Sigma-Aldrich handbook of stains, dyes and indicators. Aldrich Chemical Company, Milwaukee WI

    Google Scholar 

  • Griffiths J (1984) Developments in the light absorption properties of dyes—color and photochemical degradation reactions. In: Griffiths J (ed) Developments in the chemistry and technology of organic dyes. Blackwell, Oxford, pp 1–30

    Google Scholar 

  • Hooper SW (1994) Biodegradation of sulfonated azomatics. In: Chaudhry GR (ed) Biological degradation and bioremediation of toxic chemicals. Dioscorides, Portland OR, pp 169–182

    Google Scholar 

  • Idaka E, Ogawa T, Horitsu H (1987a) Oxidative pathway after reduction of p-aminobenzene by Pseudomonas capacia. Bull Environ Contam Toxicol 39:108–133

    Article  CAS  Google Scholar 

  • Idaka E, Horitsu H, Ogawa T (1987b) Some properties of azoreductase produced by Pseudomonas cepacia. Bull Environ Contam Toxicol 39:982–989

    Article  CAS  Google Scholar 

  • Ito K, Nakanishi M, Lee WC, Sasaki H, Zenno S, Saigo K, Kidate Y, Tanokura M (2005) Crystal structure of azoreductase AzoR from Escherichia coli. Proc Jpn Acad 81:225–228

    Article  CAS  Google Scholar 

  • Ito K, Nakanishi M, Lee WC, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2006) Three-dimensional structure of AzoR from Escherichia coli: an oxidoreductase conserved in microorganisms. J Biol Chem 281:20567–20576

    Article  CAS  Google Scholar 

  • Lane DJ (1985) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Matsudomi N, Kobayashi K, Akuta S (1977) Purification and some properties of new coccine (NC)-reductase from Bacillus cereus T-105 strain. Agric Biol Chem 41:2323–2329

    CAS  Google Scholar 

  • Mazumder R, Logan JR, Mikell AT Jr, Hooper SW (1999) Characteristics and purification of an oxygen insensitive azoreductase from Caulobacter subvibroides strain C7-D. J Ind Microbiol Biotechnol 23:467–483

    Article  Google Scholar 

  • McMullan G, Meehan C, Conneely C, Kirby N, Robinson T, Nigam P, Marchant R, Smyth WF (2001) Microbial decolorization and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  CAS  Google Scholar 

  • Moutaoakkil A, Zeroual Y, Dzayri FZ, Talbi M, Lee K, Blaghen M (2003) Purification and partial characterization of azoreductase from Enterobacter agglomerans. Arch Biochem Biophys 413:139–146

    Article  Google Scholar 

  • Nachiyar CV, Rajakumar GS (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enzyme Microb Technol 36:503–509

    Article  CAS  Google Scholar 

  • Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 176:46394–46399

    Article  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  • Suzuki Y, Yoda T, Ruhil A, Sugiura W (2001) Molecular cloning of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J Biol Chem 276:9059–9065

    Article  CAS  Google Scholar 

  • Zenno S, Koike H, Kumer AN, Jayaraman R, Tanokura M, Saigo K (1996) Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J Bacteriol 178:4508–4514

    Article  CAS  Google Scholar 

  • Zimmermann T, Kulla HG, Leisinger T (1987) Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF 46. Eur J Biochem 129:197–203

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dr. K. Kamei of Kyoto Institute of Technology for measuring protein amount by the amino acid analysis of AzrA. This study was supported in part by Japan Society for the Promotion of Science (JSPS) for the cooperative research program under the Core University Program between JSPS and Vietnamese Academy of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Ooi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooi, T., Shibata, T., Sato, R. et al. An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Appl Microbiol Biotechnol 75, 377–386 (2007). https://doi.org/10.1007/s00253-006-0836-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0836-1

Keywords

Navigation