Skip to main content
Log in

Engineering an aglycosylated Fc variant for enhanced FcγRI engagement and pH-dependent human FcRn binding

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The clinical use of therapeutic antibodies has increased sharply because of their many advantages over conventional small molecule drugs, particularly with respect to their affinity, specificity, and serum stability. Tumor or infected cells are removed by the binding of antibody Fc regions to Fc gamma receptors (FcγRs), which stimulate the activation of immune effector cells. Aglycosylated full-length IgG antibodies expressed in bacteria have different Fc conformations compared to their glycosylated counterparts produced in mammalian cells. As a result, they are unable to bind FcγRs, resulting in little to no activation of immune effector cells. In this study, we created a combinatorial library randomized at the upper CH2 loops of an aglycosylated Fc variant (Fc5: E382V/M428) and used a high-throughput flow cytometry library screening method, combined with bacterial display of homodimeric Fc domains for enhanced FcγR binding affinity. The trastuzumab Fc variant containing the identified mutations (Q295R, L328W, A330V, P331A, I332Y, E382V, M428I) not only exhibited over 120 fold higher affinity of specific binding to FcγRI than wild type aglycosylated Fc, but also retained pH-dependent FcRn binding. These results show that an aglycosylated antibody expressed in bacteria can be evolved for novel FcγR affinity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reichert, J. M. (2012) Marketed therapeutic antibodies compendium. MAbs. 4: 413–415.

    Article  Google Scholar 

  2. Ryu, J., H. Kim, and D. Nam (2012) Current status and perspectives of biopharmaceutical drugs. Biotechnol. Bioproc. Eng. 17: 900–911.

    Article  CAS  Google Scholar 

  3. Hogarth, P. M. and G. A. Pietersz (2012) Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat. Rev. Drug Discov. 11: 311–331.

    Article  CAS  Google Scholar 

  4. Jung, S. (2013) Tailoring immunoglobulin Fc for highly potent and serum-stable therapeutic antibodies. Biotechnol. Bioproc. Eng. 18: 625–636.

    Article  CAS  Google Scholar 

  5. Jung, S. T., T. H. Kang, and G. Georgiou (2010) Efficient expression and purification of human aglycosylated Fcγ receptors in Escherichia coli. Biotechnol. Bioeng. 107: 21–30.

    Article  CAS  Google Scholar 

  6. Nimmerjahn, F. and J. V. Ravetch (2008) Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8: 34–47.

    Article  CAS  Google Scholar 

  7. Jung, S. T., S. T. Reddy, T. H. Kang, M. J. Borrok, I. Sandlie, P. W. Tucker, and G. Georgiou (2010) Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumor cell killing by monocyte-dendritic cells. Proc. Natl. Acad. Sci. USA. 107: 604–609.

    Article  CAS  Google Scholar 

  8. Bruhns, P., B. Iannascoli, P. England, D. A. Mancardi, N. Fernandez, S. Jorieux, and M. Daëron (2009) Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113: 3716–3725.

    Article  CAS  Google Scholar 

  9. Lu, J., J. L. Ellsworth, N. Hamacher, S. W. Oak, and P. D. Sun (2011) Crystal structure of Fcγ receptor I and its implication in high affinity γ-immunoglobulin binding. J. Biol. Chem. 286: 40608–40613.

    Article  CAS  Google Scholar 

  10. Pfefferkorn, L. C. and M. W. Fanger (1989) Cross-linking of the high affinity Fc receptor for human immunoglobulin G1 triggers transient activation of NADPH oxidase activity. Continuous oxidase activation requires continuous de novo receptor cross-linking. J. Biol. Chem. 264: 14112–14120.

    CAS  Google Scholar 

  11. Bevaart, L., J. Goldstein, L. Vitale, C. Russoniello, J. Treml, J. Zhang, R. F. Graziano, J. H. W. Leusen, J. G. J. Winkel, and T. Keler (2006) Direct targeting of genetically modified tumour cells to FcγRI triggers potent tumour cytotoxicity. Brit. J. Haematol. 132: 317–325.

    Article  CAS  Google Scholar 

  12. van der Poel, C. E., R. M. Spaapen, J. G. van de Winkel, and J. H. Leusen (2011) Functional characteristics of the high affinity IgG receptor, FcγRI. J. Immunol. 186: 2699–2704.

    Article  Google Scholar 

  13. Cohen-Solal, J. F., L. Cassard, W. H. Fridman, and C. Sautes-Fridman (2004) Fc gamma receptors. Immunol. Lett. 92: 199–205.

    Article  CAS  Google Scholar 

  14. Yeung, Y. A., M. K. Leabman, J. S. Marvin, J. Qiu, C. W. Adams, S. Lien, M. A. Starovasnik, and H. B. Lowman (2009) Engineering human IgG1 affinity to human neonatal Fc receptor: Impact of affinity improvement on pharmacokinetics in primates. J. Immunol. 182: 7663–7671.

    Article  CAS  Google Scholar 

  15. Kuo, T. T. and V. G. Aveson (2011) Neonatal Fc receptor and IgG-based therapeutics. MAbs. 3: 422–430.

    Article  Google Scholar 

  16. Roopenian, D. C. and S. Akilesh (2007) FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7: 715–725.

    Article  CAS  Google Scholar 

  17. Valdés, R., A. Tamayo, M. González, S. Padilla, D. Geada, W. Ferro, L. Milá, L. Gómez, R. Alemán, A. Leyva, C. García, O. Mendoza, T. Alvarez, L. Dorta, Y. Villega, D. Cecilia, H. Aragón, T. González, M. La O, and J. López (2012) Production of a monoclonal antibody by ascites, hollow fiber system, and transgenic plants for vaccine production using CB.Hep-1 mAb as a study case. Biotechnol. Bioproc. Eng. 17: 145–159.

    Article  Google Scholar 

  18. Du, Z., M. Mujacic, K. Le, G. Caspary, H. Nunn, C. Heath, and P. Reddy (2013) Analysis of heterogeneity and instability of stable mAb-expressing CHO cells. Biotechnol. Bioproc. Eng. 18: 419–429.

    Article  CAS  Google Scholar 

  19. Chames, P., M. V. Regenmortel, E. Weiss, and D. Baty (2009) Therapeutic antibodies: Successes, limitations and hopes for the future. Brit. J. Pharmacol. 157: 220–233.

    Article  CAS  Google Scholar 

  20. Simmons, L. C., D. Reilly, L. Klimowski, T. S. Raju, G. Meng, P. Sims, K. Hong, R. L. Shields, L. A. Damico, P. Rancatore, and D. G. Yansura (2002) Expression of full-length immunoglobulins in Escherichia coli: Rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods. 263: 133–147.

    Article  CAS  Google Scholar 

  21. Kipriyanov, S. M. and M. Little (1999) Generation of recombinant antibodies. Mol. Biotechnol. 12: 173–201.

    Article  CAS  Google Scholar 

  22. Jeong, K. J., S. H. Jang, and N. Velmurugan (2011) Recombinant antibodies: Engineering and production in yeast and bacterial hosts. Biotechnol. J. 6: 16–27.

    Article  CAS  Google Scholar 

  23. Lee, Y. J., H. S. Kim, A. J. Ryu, and K. J. Jeong (2013) Enhanced production of full-length immunoglobulin G via the signal recognition particle (SRP)-dependent pathway in Escherichia coli. J. Biotechnol. 165: 102–108.

    Article  CAS  Google Scholar 

  24. Borrok, M. J., S. T. Jung, T. H. Kang, A. F. Monzingo, and G. Georgiou (2012) Revisiting the role of glycosylation in the structure of human IgG Fc. ACS Chem. Biol. 7: 1596–1602.

    Article  CAS  Google Scholar 

  25. Jung, S. T., W. Kelton, T. H. Kang, D. T. W. Ng, J. T. Andersen, I. Sandlie, C. A. Sarkar, and G. Georgiou (2012) Effective phagocytosis of low Her2 tumor cell lines with engineered, aglycosylated IgG displaying high FcγRIIa affinity and selectivity. ACS Chem. Biol. 8: 368–375.

    Article  Google Scholar 

  26. Berntzen, G., E. Lunde, M. Flobakk, J. T. Andersen, V. Lauvrak, and I. Sandlie (2005) Prolonged and increased expression of soluble Fc receptors, IgG and a TCR-Ig fusion protein by transiently transfected adherent 293E cells. J. Immunol. Methods. 298: 93–104.

    Article  CAS  Google Scholar 

  27. Kabat, E. A., T. T. Wu, H. M. Perry, K. S. Gottesman, and C. Foeller (1991) Sequences of Proteins of Immunological Interest. U.S. Dept. of Health and Hum. Serv., Bethesda.

    Google Scholar 

  28. Kawarasaki, Y., K. E. Griswold, J. D. Stevenson, T. Selzer, S. J. Benkovic, B. L. Iverson, and G. Georgiou (2003) Enhanced crossover SCRATCHY: Construction and high-throughput screening of a combinatorial library containing multiple nonhomologous crossovers. Nucleic Acids Res. 31: e126.

    Article  Google Scholar 

  29. Andersen, J. T., J. Dee Qian, and I. Sandlie (2006) The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur. J. Immunol. 36: 3044–3051.

    Article  CAS  Google Scholar 

  30. Jung, S. T., T. H. Kang, W. Kelton, and G. Georgiou (2011) Bypassing glycosylation: Engineering aglycosylated full-length IgG antibodies for human therapy. Curr. Opin. Biotechnol. 22: 858–867.

    Article  CAS  Google Scholar 

  31. Raghavan, M. and P. J. Bjorkman (1996) Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol. 12: 181–220.

    Article  CAS  Google Scholar 

  32. Ober, R. J., C. Martinez, X. Lai, J. Zhou, and E. S. Ward (2004) Exocytosis of IgG as mediated by the receptor, FcRn: An analysis at the single-molecule level. Proc. Natl. Acad. Sci. USA. 101: 11076-110–1.

    Article  Google Scholar 

  33. Dall’Acqua, W. F., P. A. Kiener, and H. Wu (2006) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 281: 23514–23524.

    Article  Google Scholar 

  34. Sazinsky, S. L., R. G. Ott, N. W. Silver, B. Tidor, J. V. Ravetch, and K. D. Wittrup (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc. Natl. Acad. Sci. USA. 105: 20167–20172.

    Article  CAS  Google Scholar 

  35. Kalergis, A. M. and J. V. Ravetch (2002) Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J. Exp. Med. 195: 1653–1659.

    Article  CAS  Google Scholar 

  36. Boruchov, A. M., G. Heller, M.-C. Veri, E. Bonvini, J. V. Ravetch, and J. W. Young (2005) Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest. 115: 2914–2923.

    Article  CAS  Google Scholar 

  37. Smith, P., D. J. DiLillo, S. Bournazos, F. Li, and J. V. Ravetch (2012) Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl. Acad. Sci. USA. 109: 6181–6186.

    Article  CAS  Google Scholar 

  38. Roopenian, D. C., G. J. Christianson, and T. J. Sproule (2010) Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. Methods Mol. Biol. 602: 93–104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Taek Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S.T., Kang, T.H. & Kim, Di. Engineering an aglycosylated Fc variant for enhanced FcγRI engagement and pH-dependent human FcRn binding. Biotechnol Bioproc E 19, 780–789 (2014). https://doi.org/10.1007/s12257-013-0432-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0432-z

Keywords

Navigation