Skip to main content
Log in

Current status and perspectives of biopharmaceutical drugs

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Since the first approval of recombinant human insulin three decades ago, more than 150 biopharmaceutical drugs have been marketed, and some of them became blockbuster drugs in market size. The patent expiration of the oldest biopharmaceutical drugs resulted in the development of biosimilar drugs. However the short serum half-life of biopharmaceutical drugs incurs a frequent injection to maintain a target clinical outcome in patients. The other major critical concern of biopharmaceutical drugs is immunogenicity producing anti-drug antibodies. These antibodies may reduce clinical efficacy by neutralizing biological activity, and may not only cause a severe allergic reaction but also other serious adverse reactions by blocking endogenous proteins. In order to improve pharmaceutical properties and reduce immunogenicity, the next generation biobetter drugs were achieved by glycoengineering technology, pegylation technology and protein engineering technology. Other biobetter drugs having optimized binding sites were also generated by in vitro display technology. Many of those biobetter drugs have been developed and/or are under development, and come into the clinical field in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IMS Health Inc. (2009) “IMS Health Midas”.

  2. Nam, D. H. and D. D. Y. Ryu (1999) Biomolecular engineering and drug development. Biotechnol. Bioproc. Eng. 4: 83–92.

    Article  CAS  Google Scholar 

  3. Ryu, D. D. Y. and D. H. Nam (2000) Recent progress in biomolecular engineering. Biotechnol. Progr. 16: 2–16.

    Article  CAS  Google Scholar 

  4. Moors, E. S. and H. Shellekens (2010) The strengths and weaknesses of the European biosimilar regulatory pathway. Nat. Biotechnol. 28: 28–32.

    Article  Google Scholar 

  5. Rathore, A. S. (2009) Follow-on protein products: Scientific issues, developments and challenges. Trends Biotechnol. 27: 698–705.

    Article  CAS  Google Scholar 

  6. Woodcock, J., J. Griffin, R. Behrman, B. Cherney, T. Crescenzi, B. Frase, D. Hixon, C. Joneckis, S. Kozlowski, A. Rosenberg, L. Schrager, E. Shacter, R. Temple, K. Webber, and H. Winkle (2007) The FDA’s assessment of follow-on protein products: A historical perspective. Nat. Rev. Drug Discov. 6: 437–442.

    Article  Google Scholar 

  7. Joung J., J. S. Robertson, E. Griffiths, I. Knezevic, and WHO Informal Consultation Group (2008). WHO informal consultation on regulatory evaluation of therapeutic biological medicinal products held at WHO Headquarters, Geneva, 19–20 April 2007. Biologic. 36: 269–276.

    Article  CAS  Google Scholar 

  8. Knezevic, I. and E. Griffiths (2011) Biosimilars — global issues, national solutions. Biologic. 39: 252–255.

    Article  Google Scholar 

  9. Kang, H. -N. (2011) Summary of the diverse situation of similar biotherapeutic products in the selected countries (August 2010). Biologic. 39: 304–307.

    Article  Google Scholar 

  10. Knezevic, I. (2011) Evaluation of similar biotherapeutic products (SBPs): Scientific principles and their implementation. Biologic. 39: 256–261.

    Article  Google Scholar 

  11. Wenzel, R. G. (2008) Biosimilars: Illustration of scientific issues in two examples. Am. J. Health Syst. Pharm. 65: 9–15.

    Article  Google Scholar 

  12. Salgado, E. and J. J. Gómez-Reino (2011) The risk of tuberculosis in patients treated with TNF antagonists. Expert Rev. Clin. Immunol. 7: 329–340.

    Article  CAS  Google Scholar 

  13. Tavazzi, E., P. Ferrante, and K. Khalili (2011) Progressive multifocal leukoencephalopathy: An unexpected complication of modern therapeutic monoclonal antibody therapies. Clin. Microbiol. Infect. 17: 1776–1780.

    Article  CAS  Google Scholar 

  14. Rosenberg, A. S. (2003) Immunogenicity of biological therapeutics: A hierarchy of concerns. Develop. Biol. (Basel) 112: 15–21.

    CAS  Google Scholar 

  15. Barbosa, M. D. F. S. (2011) Immunogenicity of biotherapeutics in the context of developing biosimilars and biobetters. Drug Discov. Today 16: 345–353.

    Article  CAS  Google Scholar 

  16. Tamilvanan, S., N. L. Raja, B. Sa, and S. K. Basu (2010) Clinical concerns of immunogenicity produced at cellular levels by biopharmaceuticals following their parenteral administration into human body. J. Drug Target. 18: 489–498.

    Article  CAS  Google Scholar 

  17. Massa, G., M. Vanderschueren-Lodeweyckx, and R. Bouillon (1993) Five-year follow-up of growth hormone antibodies in growth hormone deficient children treated with recombinant human growth hormone. Clin. Endocrinol. 38: 137–142.

    Article  CAS  Google Scholar 

  18. Schellenkens, H. and N. Casadevall (2004) Immunogenicity of recombinant human proteins: Causes and consequences. J. Neurol. 251: 4–9.

    Google Scholar 

  19. Frost, H. (2005) Antibody-mediated side effects of recombinant proteins. Toxicol. 209: 155–160.

    Article  CAS  Google Scholar 

  20. Berman, E., G. Heller, S. Kempin, T. Gee, L. L. Tran, and B. Clarkson (1990) Incidence of response and long-term follow-up in patients with hairy cell leukemia treated with recombinant interferon alfa-2a. Blood 75: 839–845.

    CAS  Google Scholar 

  21. Wussow, P. V., D. Jakschies, M. Freund, R. Hehlmann, F. Brockhaus, H. Hochkeppel, M. Horisberger, and H. Deicher (1991) Treatment of anti-recombinant interferon-α2 antibody positive CML patients with natural interferon-α. Brit. J. Haematol. 78: 210–216.

    Article  CAS  Google Scholar 

  22. van der Eijk, A. A., J. M. Vrolijk, and B. L. Haagmans (2006) Antibodies neutralizing peginterferon alfa during retreatment of hepatitis C. New Engl. J. Med. 354: 1323–1324.

    Article  Google Scholar 

  23. Casadevall, N., J. Nataf, B. Viron, A. Kolta, J. J. Kiladjian, P. Martin-Dupont, P. Michaud, T. Papo, V. Ugo, I. Teyssandier, B. Varet, and P. Mayeux (2002) Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. New Engl. J. Med. 346: 469–475.

    Article  CAS  Google Scholar 

  24. Locatelli, F., L. Del Vecchio, and P. Pozzoni (2007) Pure red-cell aplasia “epidemic”—mystery completely revealed? Periton. Dial. Int. 27: 303–307.

    Google Scholar 

  25. McKoy, J. M., R. E. Stonecash, D. Cournoyer, J. Rossert, A. R. Nissenson, D. W. Raisch, N. Casadevall, and C. L. Bennett (2008) Epoetin-associated pure red cell aplasia: Past, present, and future considerations. Transfusion 48: 1754–1762.

    Article  Google Scholar 

  26. Shin, S. K., S. P. Pack, J. G. Oh, N. K. Kang, M. H. Chang, Y. H. Chung, S. J. Kim, J. W. Lee, and T. H. Heo (2011) Anti-erythropoietin and anti-thrombopoietin antibodies induced after administration of recombinant human erythropoietin. Int. Immunopharmacol. 11: 2237–2241.

    Article  CAS  Google Scholar 

  27. Lusher, J. M. (2000) Inhibitor antibodies to factor VIII and factor IX: Management. Seminar Thromb. Hemost. 26: 179–188.

    Article  CAS  Google Scholar 

  28. Ehrenforth, S., W. Kreuz, I. Scharrer, R. Linde, M. Funk, T. Güngör, B. Krackhardt, and B. Kornhuber (1992) Incidence of development of factor VIII and factor IX inhibitors in haemophiliacs. Lancet 339: 594–598.

    Article  CAS  Google Scholar 

  29. Warrier, I., B. M. Ewenstein, M. A. Koerper, A. Shapiro, N. Key, D. DiMichele, R. T. Miller, J. Pasi, G. E. Rivard, S. S. Sommer, J. Katz, F. Bergmann, R. Ljung, P. Petrini, and J. M. Lusher (1997) Factor IX inhibitors and anaphylaxis in hemophilia B. J. Pediatr. Hematol. Oncol. 19: 23–27.

    Article  CAS  Google Scholar 

  30. Fineberg, S. E., J. A. Galloway, N. S. Fineberg, M. J. Rathbun, and S. Hufferd (1983) Immunogenicity of recombinant DNA human insulin. Diabetol. 25: 465–469.

    Article  CAS  Google Scholar 

  31. Oberg, K. and G. Alm (1997) The incidence and clinical significance of antibodies to interferon-α in patients with solid tumors. Biotherapy 10: 1–5

    Article  CAS  Google Scholar 

  32. Steis, R. G., J. W. Smith 2nd, W. J. Urba, J. W. Clark, L. M. Itri, L. M. Evans, C. Schoenberger, and D. L. Longo (1988) Resistance to recombinant interferon α-2a in hairy-cell leukemia associated with neutralizing anti-interferon antibodies. New Engl. J. Med. 318: 1409–1413.

    Article  CAS  Google Scholar 

  33. Bonetti, P., G. Diodati, C. Drago, C. Casarin, S. Scaccabarozzi, G. Realdi, A. Ruol, and A. Alberti (1994) Interferon antibodies in patients with chronic hepatitic C virus infection treated with recombinant interferon α-2a. J. Hepatol. 20: 416–420.

    Article  CAS  Google Scholar 

  34. Douglas, D. D., J. Rakela, H. J. Lin, F. B. Hollinger, H. F. Taswell, A. J. Czaja, J. B. Gross, M. L. Anderson, K. Parent, and C. R. Fleming (1993) Randomized controlled trial of recombinant α-2a-interferon for chronic hepatitis C. Comparison of alanine aminotransferase normalization versus loss of HCV RNA and anti-HCV IgM. Digest. Dis. Sci. 38: 601–607.

    Article  CAS  Google Scholar 

  35. Larocca, A. P., S. C. Leung, S. G. Marcus, C. B. Colby, and E. C. Borden (1989) Evaluation of neutralizing antibodies in patients treated with recombinant interferon-β ser. J. Interferon Res. 9: 51–60.

    Google Scholar 

  36. Abdul-Ahad, A. K., A. R. Galazka, M. Revel, M. Biffoni, and E. C. Borden (1997) Incidence of antibodies to interferon-β in patients treated with recombinant human interferon-β1a from mammalian cells. Cytokines Cell. Mol. Ther. 3: 27–32.

    CAS  Google Scholar 

  37. Myhr, K. M., C. Ross, H. I. Nyland, K. Bendtzen, and C. A. Vedeler (2000) Neutralizing antibodies to interferon (IFN) α-2a and IFN β-1a or IFN β-1b in MS are not cross-reactive. Neurol. 55: 1569–1572.

    Article  CAS  Google Scholar 

  38. Antonelli, G., F. Bagnato, C. Pozzilli, E. Simeoni, S. Bastianelli, M. Currenti, F. de Pisa, C. Fieschi, C. Gasperini, M. Salvetti, and F. Dianzani (1998) Development of neutralizing antibodies in patients with relapsing-remitting multiple sclerosis treated with IFN-β1a. J. Interferon Cytokine Res. 18: 345–350.

    Article  CAS  Google Scholar 

  39. Ullenhag, G., C. Bird, P. Ragnhammar, J. E. Frödin, K. Strigård, A. OIsterborg, R. Thorpe, H. Mellstedt, and M. Wadhwa (2001) Incidence of GM-CSF antibodies in cancer patients receiving GM-CSF for immunostimulation. Clin. Immunol. 99: 65–74.

    Article  CAS  Google Scholar 

  40. Wadhwa, M., C. Bird, J. Fagerberg, R. Gaines-Das, P. Ragnhammar, H. Mellstedt, and R. Thorpe (1996) Production of neutralizing granulocyte-macrophage colony-stimulating factor (GMCSF) antibodies in carcinoma patients following GM-CSF combination therapy. Clin. Exp. Immunol. 104: 351–358.

    Article  CAS  Google Scholar 

  41. Ragnhammar, P., H. J. Friesen, J. E. Frödin, A. K. Lefvert, M. Hassan, A. Osterborg, and H. Mellstedt (1994) Induction of antirecombinant human granulocyte-macrophage colony-stimulating factor (Escherichia coli-derived) antibodies and clinical effects in nonimmunocompromised patients. Blood 84: 4078–4087.

    CAS  Google Scholar 

  42. Boven, K., S. Stryker, J. Knight, A. Thomas, M. van Regenmortel, D. M. Kemeny, D. Power, J. Rossert, and N. Casadevall (2005) The increased incidence of pure red cell aplasia with an Eprex formulation in uncoated rubber stopper syringes. Kidney Int. 67: 2346–2353.

    Article  Google Scholar 

  43. Lusher, J. M., S. Arkin, C. F. Abildgaard, and R. S. Schwartz (1993) Recombinant factor VIII for the treatment of previously untreated patients with hemophilia A. Safety, efficacy, and development of inhibitors. Kogenate previously untreated patient study group. New Engl. J. Med. 328: 453–459.

    Article  CAS  Google Scholar 

  44. Bray, G. L., E. D. Gomperts, S. Courter, R. Gruppo, E. M. Gordon, M. Manco-Johnson, A. Shapiro, E. Scheibel, G. White, and M. Lee (1994) A multicenter study of recombinant factor VIII (recombinate): Safety, efficacy, and inhibitor risk in previously untreated patients with hemophilia A. The Recombinate Study Group. Blood 83: 2428–2435.

    CAS  Google Scholar 

  45. Kreuz, W., C. E. Ettingshausen, A. Zyschka, J. Oldenburg, I. M. Saguer, S. Ehrenforth, and T. Klingebiel (2002) Inhibitor development in previously untreated patients with hemophilia A: A prospective long-term follow-up comparing plasma-derived and recombinant products. Seminar Thromb. Hemost. 28: 285–290.

    Article  CAS  Google Scholar 

  46. Charles, S. A. (2005) SuperGenerics: A better alternative for bio generics. Drug Discov. Today 10: 533–535.

    Article  Google Scholar 

  47. Sinclair, A. M. and S. Elliott (2005) Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins. J. Pharm. Sci. 94: 1626–1635.

    Article  CAS  Google Scholar 

  48. Rensen, P. C., L. A. Sliedregt, M. Ferns, E. Kieviet, S. M. van Rossenberg, S. H. van Leeuwen, T. J. van Berkel, and E. A. Biessen (2001) Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J. Biol. Chem. 276: 37577–37584.

    Article  CAS  Google Scholar 

  49. Kim, H. J. and H. -J. Kim (2009) The effect of cell concentration on alpha 2,3-sialyltransferase activity in attachment culture of a human erythropoietin-producing Chinese hamster ovary cell line. Biotechnol. Bioproc. Eng. 14: 406–413

    Article  CAS  Google Scholar 

  50. Ohls, R. K. and A. Dai (2004) Long-acting erythropoietin: Clinical studies and potential uses in neonates. Clin. Perinatol. 31: 77–89.

    Article  CAS  Google Scholar 

  51. Egrie, J. C., E. Dwyer, J. K. Browne, A. Hitz, and M. A. Lykos (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 31: 290–299.

    Article  CAS  Google Scholar 

  52. Tanswell, P., N. Modi D. Combs, and T. Danays (2002) Pharmacokinetics and pharmacodynamics of tenecteplase in fibrinolytic therapy of acute myocardial infarction. Clin. Pharmacokinet. 41: 1229–1245.

    Article  CAS  Google Scholar 

  53. McVie-Wylie, A. J., K. L. Lee, H. Qiu, X. Jin, H. Do, R. Gotschall, B. L. Thurberg, C. Rogers, N. Raben, M. O’Callaghan, W. Canfield, L. Andrews, J. M. McPherson, and R. J. Mattaliano (2008) Biochemical and pharmacological characterization of different recombinant acid α-glucosidase preparations evaluated for the treatment of Pompe disease. Mol. Genet. Metab. 94: 448–455.

    Article  CAS  Google Scholar 

  54. Zhu, Y., J. L. Jiang, N. K. Gumlaw, J. Zhang, S. D. Bercury, R. J. Ziegler, K. Lee, M. Kudo, W. M. Canfield, T. Edmunds, C. Jiang, R. J. Mattaliano, and S. H. Cheng (2009) Glycoengineered acid α-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol. Ther. 17: 954–963.

    Article  CAS  Google Scholar 

  55. Morgan, C. and D. Fernandes (2011) Designing biobetter monoclonal antibody therapeutics by glycoengineering. Intern. Pharm. Ind. 1: 38–44.

    Google Scholar 

  56. Bailon, P. and C. Y. Won (2009) PEG-modified biopharmaceuticals. Expert Opin. Drug. Deliv. 6: 1–16.

    Article  CAS  Google Scholar 

  57. Pasut, G. and F. M. Veronese (2009) PEGylation for improving the effectiveness of therapeutic biomolecules. Drugs Today 45: 687–695.

    Article  CAS  Google Scholar 

  58. Jevsevar, S., M. Kunstelj, and V. G. Porekar (2010) PEGylation of therapeutic proteins. Biotechnol. J. 5: 113–128.

    Article  CAS  Google Scholar 

  59. Davis, S., A. Abuchowski, Y. K. Park, and F. F. Davis (1981) Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin. Exp. Immunol. 46: 649–652.

    CAS  Google Scholar 

  60. Asselin, B. L., J. C. Whitin, D. J. Coppola, I. P. Rupp, S. E. Sallan, and H. J. Cohen (1993) Comparative pharmacokinetic studies of three asparaginase preparations. J. Clin. Oncol. 11: 1780–1786.

    CAS  Google Scholar 

  61. Bailon, P., A. Palleroni, C. A. Schaffer, C. L. Spence, W. J. Fung, J. E. Porter, G. K. Ehrlich, W. Pan, Z. X. Xu, M. W. Modi, A. Farid, W. Berthold, and M. Graves (2001) Rational design of a potent, long-lasting form of interferon: A 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug. Chem. 12: 195–202.

    Article  CAS  Google Scholar 

  62. Glue, P., J. W. S. Fang, R. Rouzier-Panis, C. Raffanel, R. Sabo, S. K. Gupta, M. Salfi, S. Jacobs, and The Hepatitis C Intervention Therapy Group (2000) Pegylated interferon-α2b: Pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Clin. Pharmacol. Ther. 68: 556–567.

    Article  CAS  Google Scholar 

  63. Grigg, A., P. Solal-Celigny, P. Hoskin, K. Taylor, A. McMillan, R. Forstpointner, P. Bacon, J. Renwick, W. Hiddemann, and International Study Group (2003) Open-label, randomized study of pegfilgrastim vs. daily filgrastim as an adjunct to chemotherapy in elderly patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma 44: 1503–1508.

    CAS  Google Scholar 

  64. Macdougall, I. C., R. Robson, S. Opatrna, X. Liogier, A. Pannier, P. Jordan, F. C. Dougherty, and B. Reigner (2006) Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (C.E.R.A.) in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 1: 1211–1215.

    Article  CAS  Google Scholar 

  65. Olson, K., R. Gehant, and V. Mukku (1997) Preparation and characterization of poly(ethylene glycol)ylated human growth hormone antagonist. pp. 170–180. In: J. M. Harris and S. Zalipsky (eds.). Poly(ethylene glycol) chemistry and biological applications. American Chemical Society, Washington D. C., USA.

    Chapter  Google Scholar 

  66. Choy, E. H., B. Hazleman, M. Smith, K. Moss, L. Lisi, D. G. Scott, J. Patel, M. Sopwith, and D. A. Isenberg (2002) Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: A phase II double-blinded, randomized, dose-escalating trial. Rheumatol. 41: 1133–1137.

    Article  CAS  Google Scholar 

  67. Sundy, J. S., N. J. Ganson, S. J. Kelly, E. L. Scarlett, C. D. Rehrig, W. Huang, and M. S. Hershfield (2007) Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 56: 1021–1028.

    Article  CAS  Google Scholar 

  68. Hong, H. J. and S. T. Kim (2002) Antibody engineering. Biotechnol. Bioproc. Eng. 7: 150–154.

    Article  CAS  Google Scholar 

  69. Yoon, S., Y. -S. Kim, H. Shim, and J. Chung (2010) Current perspectives on therapeutic antibodies. Biotechnol. Bioproc. Eng. 15: 709–715.

    Article  CAS  Google Scholar 

  70. Sandhu, J. S. (1992) Protein engineering of antibodies. Crit. Rev. Biotechnol. 12: 437–462.

    Article  CAS  Google Scholar 

  71. Kipriyanov, S. M. and M. Little (1999) Generation of recombinant antibodies. Mol. Biotechnol. 12: 173–201.

    Article  CAS  Google Scholar 

  72. Weiner, L. M. (2006) Fully human therapeutic monoclonal antibodies. J. Immunother. 29: 1–9.

    Article  CAS  Google Scholar 

  73. Carter, P. J. (2011) Introduction to current and future protein therapeutics: A protein engineering perspective. Exp. Cell Res. 317: 1261–1269.

    Article  CAS  Google Scholar 

  74. Jazayeri, J. A. and G. J. Carroll (2008) Fc-based cytokines: Prospects for engineering superior therapeutics. BioDrugs 22: 11–26.

    Article  CAS  Google Scholar 

  75. Pugsley, M. K. (2001) Etanercept Immunex. Curr. Opin. Investig. Drugs 2: 1725–1731.

    CAS  Google Scholar 

  76. Krueger, G. G. and K. P. Callis (2003) Development and use of alefacept to treat psoriasis. J. Am. Acad. Dermatol. 49: 87–97.

    Article  Google Scholar 

  77. Lundquist, L. (2007) Abatacept: A novel therapy approved for the treatment of patients with rheumatoid arthritis. Adv. Ther. 24: 333–345.

    Article  CAS  Google Scholar 

  78. McDermott, M. F. (2009) Rilonacept in the treatment of chronic inflammatory disorders. Drugs Today 45: 423–430.

    Article  CAS  Google Scholar 

  79. Wojciechowski, D. and F. Vincenti (2010) How the development of new biological agents may help minimize immunosuppression in kidney transplantation: The impact of belatacept. Curr. Opin. Organ Transplant. 15: 697–702.

    Article  Google Scholar 

  80. Molineux, G. (2011) The development of romiplostim for patients with immune thrombocytopenia. Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2011.05975.

  81. Skerra, A. (2007) Alternative non-antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 18: 295–304.

    Article  CAS  Google Scholar 

  82. Gebauer, M. and A. Skerra (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 13: 245–255.

    Article  CAS  Google Scholar 

  83. Löfblom, J., J. Feldwisch, V. Tolmachev, J. Carlsson, S. Ståhl, and F. Y. Frejd (2010) Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584: 2670–2680.

    Article  Google Scholar 

  84. Stumpp, M. T., H. K. Binz, and P. Amstutz (2008) DARPins: A new generation of protein therapeutics. Drug Discov. Today 13: 695–701.

    Article  CAS  Google Scholar 

  85. Skerra, A. (2008) Alternative binding proteins: Anticalins — harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J. 275: 2677–2683.

    Article  CAS  Google Scholar 

  86. Bradbury, A. R., S. Sidhu, S. Dübel, and J. McCafferty (2011) Beyond natural antibodies: The power of in vitro display technologies. Nat. Biotechnol. 29: 245–254.

    Article  CAS  Google Scholar 

  87. Löfblom, J. (2011) Bacterial display in combinatorial protein engineering. Biotechnol. J. 6: 1115–1129.

    Article  Google Scholar 

  88. Machold, K. P. and J. S. Smolen (2003) Adalimumab — A new TNF-α antibody for treatment of inflammatory joint disease. Expert Opin. Biol. Ther. 3: 351–360.

    CAS  Google Scholar 

  89. Lehmann, A. (2006) Ecallantide (Dyax/Genzyme). Curr. Opin. Investig. Drugs 7: 282–290.

    CAS  Google Scholar 

  90. Ki, M. K., K. J. Kang, and H. Shim (2010) Phage display selection of EGFR-specific antibodies by capture-sandwich panning. Biotechnol. Bioproc. Eng. 15: 152–156.

    Article  CAS  Google Scholar 

  91. Bostrom, J., S. F. Yu, D. Kan, B. A. Appleton, C. V. Lee, K. Billeci, W. Man, F. Peale, S. Ross, C. Wiesmann, and G. Fuh (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323: 1610–1614.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Hyun Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, J.K., Kim, H.S. & Nam, D.H. Current status and perspectives of biopharmaceutical drugs. Biotechnol Bioproc E 17, 900–911 (2012). https://doi.org/10.1007/s12257-012-0095-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0095-1

Keywords

Navigation