Skip to main content

Fc Engineering: Tailored Synthetic Human IgG1-Fc Repertoire for High-Affinity Interaction with FcRn at pH 6.0

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1827))

Abstract

The therapeutic efficacy of an antibody drug depends on the variable domains and on the constant crystallizable fragment (Fc). IgG variable domains have been the targets of extensive molecular engineering in search of more specific binders with higher affinities for their targets. Similarly, Fc engineering approaches have led to modulating both the immune effector responses and serum half-lives of therapeutic antibodies. A high-affinity interaction between the IgG Fc and neonatal Fc receptor (FcRn) at a slightly acidic pH can protect IgG molecules from undergoing lysosomal or serum proteinase-induced degradation. Here we describe an optimized protocol for the development of a tailored, synthetic human Fc repertoire to select Fc mutants which show highly pH-restricted FcRn binding with high affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiner GJ (2015) Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 15:361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen G, Sidhu SS (2014) Design and generation of synthetic antibody libraries for phage display. Methods Mol Biol 1131:113–131

    Article  CAS  PubMed  Google Scholar 

  3. Holzlöhner P, Hanack K (2017) Generation of murine monoclonal antibodies by hybridoma technology. J Vis Exp 119:e54832

    Google Scholar 

  4. Miersch S, Li Z, Hanna R, McLaughlin ME, Hornsby M, Matsuguchi T, Paduch M, Sääf A, Wells J, Koide S, Kossiakoff A, Sidhu SS (2015) Scalable high throughput selection from phage-displayed synthetic antibody libraries. J Vis Exp 95:51492

    Google Scholar 

  5. Nogales-Gadea G, Saxena A, Hoffmann C, Hounjet J, Coenen D, Molenaar P, Losen M, Martinez-Martinez P (2015) Generation of recombinant human IgG monoclonal antibodies from immortalized sorted B cells. J Vis Exp 100:e52830

    Google Scholar 

  6. Tonikian R, Zhang Y, Boone C, Sidhu SS (2007) Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2:1368–1386

    Article  CAS  PubMed  Google Scholar 

  7. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078

    Article  CAS  PubMed  Google Scholar 

  8. Jefferis R, Lund J, Pound JD (1998) IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev 163:59–76

    Article  CAS  PubMed  Google Scholar 

  9. Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brekke OH, Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2:52–62

    Article  CAS  PubMed  Google Scholar 

  11. Stapleton NM, Andersen JT, Stemerding AM, Bjarnarson SP, Verheul RC, Gerritsen J, Zhao Y, Kleijer M, Sandlie I, de Haas M, Jonsdottir I, van der Schoot CE, Vidarsson G (2011) Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat Commun 2:599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu H, Saxena A, Sidhu SS, Wu D (2017) Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds. Front Immunol 8:38

    PubMed  PubMed Central  Google Scholar 

  13. Saxena A, Wu D (2016) Advances in therapeutic Fc engineering - modulation of IgG-associated effector functions and serum half-life. Front Immunol 7:580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Awan FT, Lapalombella R, Trotta R, Butchar JP, Yu B, Benson DM Jr, Roda JM, Cheney C, Mo X, Lehman A, Jones J, Flynn J, Jarjoura D, Desjarlais JR, Tridandapani S, Caligiuri MA, Muthusamy N, Byrd JC (2010) CD19 targeting of chronic lymphocytic leukemia with a novel Fc-domain-engineered monoclonal antibody. Blood 115:1204–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chu SY, Horton HM, Pong E, Leung IW, Chen H, Nguyen DH, Bautista C, Muchhal US, Bernett MJ, Moore GL, Szymkowski DE, Desjarlais JR (2012) Reduction of total IgE by targeted coengagement of IgE B-cell receptor and FcγRIIb with Fc-engineered antibody. J Allergy Clin Immunol 129:1102–1115

    Article  CAS  PubMed  Google Scholar 

  16. Chu SY, Vostiar I, Karki S, Moore GL, Lazar GA, Pong E, Joyce PF, Szymkowski DE, Desjarlais JR (2008) Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcgammaRIIb with Fc-engineered antibodies. Mol Immunol 45:3926–3933

    Article  CAS  PubMed  Google Scholar 

  17. Dall'Acqua WF, Kiener PA, Wu H (2006) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281:23514–23524

    Article  CAS  PubMed  Google Scholar 

  18. Heider KH, Kiefer K, Zenz T, Volden M, Stilgenbauer S, Ostermann E, Baum A, Lamche H, Küpcü Z, Jacobi A, Müller S, Hirt U, Adolf GR, Borges E (2011) A novel Fc-engineered monoclonal antibody to CD37 with enhanced ADCC and high proapoptotic activity for treatment of B-cell malignancies. Blood 118:4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, Keller S, Tang MT, Tso JY, Vásquez M, Tsurushita N (2004) Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279:6213–6216

    Article  CAS  PubMed  Google Scholar 

  20. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176:346–356

    Article  CAS  PubMed  Google Scholar 

  21. Lee EM, Yee D, Busfield SJ, McManus JF, Cummings N, Vairo G, Wei A, Ramshaw HS, Powell JA, Lopez AF, Lewis ID, McCall MN, Lock RB (2015) Efficacy of an Fc-modified anti-CD123 antibody (CSL362) combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica 100:914–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kenanova V, Olafsen T, Williams LE, Ruel NH, Longmate J, Yazaki PJ, Shively JE, Colcher D, Raubitschek AA, Wu AM (2007) Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy. Cancer Res 67:718–726

    Article  CAS  PubMed  Google Scholar 

  23. Olafsen T (2012) Fc engineering: serum half-life modulation through FcRn binding. Methods Mol Biol 907:537–556

    Article  CAS  PubMed  Google Scholar 

  24. Pyzik M, Rath T, Lencer WI, Baker K, Blumberg RS (2015) FcRn: the architect behind the immune and nonimmune functions of IgG and albumin. J Immunol 194:4595–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sand KM, Bern M, Nilsen J, Noordzij HT, Sandlie I, Andersen JT (2015) Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol 5:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337:184–187

    Article  CAS  PubMed  Google Scholar 

  27. Wu Z, Simister NE (2001) Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J Biol Chem 276:5240–5247

    Article  CAS  PubMed  Google Scholar 

  28. Burmeister WP, Huber AH, Bjorkman PJ (1994) Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372:379–383. https://doi.org/10.1038/372379a0

    Article  PubMed  CAS  Google Scholar 

  29. Dall'Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA, Wu H, Kiener PA, Langermann S (2002) Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol 169:5171–5180

    Article  PubMed  Google Scholar 

  30. Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES (1997) Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 15:637–640

    Article  CAS  PubMed  Google Scholar 

  31. Martin WL, West AP Jr, Gan L, Bjorkman PJ (2001) Crystal structure at 2.8 a of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell 7:867–877

    Article  CAS  PubMed  Google Scholar 

  32. Medesan C, Cianga P, Mummert M, Stanescu D, Ghetie V, Ward ES (1998) Comparative studies of rat IgG to further delineate the Fc:FcRn interaction site. Eur J Immunol 28:2092–2100

    Article  CAS  PubMed  Google Scholar 

  33. Medesan C, Matesoi D, Radu C, Ghetie V, Ward ES (1997) Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol 158:2211–2217

    PubMed  CAS  Google Scholar 

  34. Medesan C, Radu C, Kim JK, Ghetie V, Ward ES (1996) Localization of the site of the IgG molecule that regulates maternofetal transmission in mice. Eur J Immunol 26:2533–2536

    Article  CAS  PubMed  Google Scholar 

  35. Oganesyan V, Damschroder MM, Woods RM, Cook KE, Wu H, Dall'acqua WF (2009) Structural characterization of a human Fc fragment engineered for extended serum half-life. Mol Immunol 46:1750–1755

    Article  CAS  PubMed  Google Scholar 

  36. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276:6591–6604

    Article  CAS  PubMed  Google Scholar 

  37. Vaughn DE, Bjorkman PJ (1998) Structural basis of pH-dependent antibody binding by the neonatal Fc receptor. Structure 6:63–73

    Article  CAS  PubMed  Google Scholar 

  38. Oganesyan V, Damschroder MM, Cook KE, Li Q, Gao C, Wu H, Dall'Acqua WF (2014) Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem 289:7812–7824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ (1995) Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry 34:14649–14657

    Article  CAS  PubMed  Google Scholar 

  40. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng Y, Gong R, Dimitrov DS (2011) Design, expression and characterization of a soluble single-chain functional human neonatal Fc receptor. Protein Expr Purif 79:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang R, Fang P, Kay BK (2012) Improvements to the Kunkel mutagenesis protocol for constructing primary and secondary phage-display libraries. Methods 58:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lechner RL, Engler MJ, Richardson CC (1983) Characterization of strand displacement synthesis catalyzed by bacteriophage T7 DNA polymerase. J Biol Chem 258:11174–11184

    PubMed  CAS  Google Scholar 

  44. Krishnan R, Tsubery H, Proschitsky MY, Asp E, Lulu M, Gilead S, Gartner M, Waltho JP, Davis PJ, Hounslow AM, Kirschner DA, Inouye H, Myszka DG, Wright J, Solomon B, Fisher RA (2014) A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. J Mol Biol 426:2500–2519

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No.: 81572698 and 31771006) to DW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachdev S. Sidhu or Donghui Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saxena, A. et al. (2018). Fc Engineering: Tailored Synthetic Human IgG1-Fc Repertoire for High-Affinity Interaction with FcRn at pH 6.0. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics