Skip to main content
Log in

Purification and biochemical characterization of a detergent stable α-amylase from Pseudomonas stutzeri AS22

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study reports the purification and biochemical characterization of a novel maltotetraose-forming-α-amylase from Pseudomonas stutzeri AS22, designated PSA. The P. stutzeri α-amylase (PSA) was purified from the culture supernatant to homogeneity by Sepharose mono Q anion exchange chromatography, ultrafiltration and Sephadex G-100 gel filtration, with a 37.32-fold increase in specific activity, and 31% recovery. PSA showed a molecular weight of approximately 57 kDa by SDS-PAGE. The N-terminal amino acid sequence of the first 7 amino acids was DQAGKSP. This enzyme exhibited maximum activity at pH 8.0 and 55°C, performed stably over a broad range of pH 5.0 ≈ 12.0, but rapidly lost activity above 50°C. Both potato starch and Ca2+ ions have a protective effect on the thermal stability of PSA. The enzyme activity was inhibited by Hg2+, Mn2+, Cd2+, Cu2+, and Co2+, and enhanced by Ba2+. PSA belonged to the EDTA-sensitive α-amylase. The purified enzyme showed high stability towards surfactants (Tween 20, Tween 80 and Triton X-100), and oxidizing agents, such as sodium per borate and H2O2. In addition, PSA showed excellent compatibility with a wide range of commercial solid and liquid detergents at 30°C, suggesting potential application in the detergent industry. Maltotetraose was the specific end product obtained after hydrolysis of starch by the enzyme for an extended period of time, and was not further degraded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Owino, V. O, L. M. Kasonka, M. M. Sinkala, J. K. Wells, S. Eaton, T. Darch, A. Coward, A. M. Tomkins, and S. M. Filteau (2007) Fortified complementary foods with or without alpha amylase treatment increase hemoglobin but do not reduce breast milk intake of 9-mo-old Zambian infants. Am. J. Clin. Nutr. 86: 1094–1103.

    CAS  Google Scholar 

  2. Van der Maarel, M. J. E. C., B. Van der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen (2002) Properties and applications of starch converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155.

    Article  Google Scholar 

  3. Sivaramakrishnan, S., D. Gangadharan, K. M. Nampoothiri, C. R. Soccol, and A. Pandey (2006) α-Amylases from microbial sources-An overview on recent developments. Food Technol. Biotechnol. 44: 173–184.

    CAS  Google Scholar 

  4. Aiyer, P. V. (2005) Amylases and their applications. Afri. J. Biotechnol. 4: 1525–1529.

    CAS  Google Scholar 

  5. Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan (2003) Microbial α-amylase: A biotechnological perspective. Proc. Biochem. 38: 1599–1616.

    Article  CAS  Google Scholar 

  6. Pandey, A., P. Nigam, C. R. Soccol, T. V. Soccol, D. Singh, and R. Mohan (2000) Advances in microbial amylases. Biotech. Appl. Biochem. 31: 135–152.

    Article  CAS  Google Scholar 

  7. Malabendu, J., M. Chiranjit, S. Saptadip, R. P. Bikas, I. S. Syed, K. D. M. Pradeep, and C. M. Keshab (2013) Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: An efficacy testing for preparation of maltooligosaccharides. Ind. Crops. Prod. 41: 386–391.

    Article  Google Scholar 

  8. Soleimani, M., A. Khani, and K. Najafzadeh (2012) α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal. B: Enzym. 74: 1–5.

    Article  CAS  Google Scholar 

  9. Gangadharan, D., K. M. Nampoothiri, S. Sivaramakrishnan, and A. Pandey (2009) Immobilized bacterial α-amylase for effective hydrolysis of raw and soluble starch. Food Res. Int. 42: 436–442.

    Article  CAS  Google Scholar 

  10. Robyt, J. F. and R. J. Ackerman (1971) Isolation, purification and characterization of a maltotetraose-producing amylase from Pseudomonas stuzeri. Arch. Biochem. Biophys. 145: 105–114.

    Article  CAS  Google Scholar 

  11. Nakada, T., M. Kubota, S. Sakai, and Y. Tsujisaka (1990) Purification and characterization of two forms of maltotetraose-forming amylase from Pseudomonas stutzeri. Agric. Biol. Chem. 54: 737–743.

    Article  CAS  Google Scholar 

  12. Sakano, Y., Y. Kashiwagi, and T. Kobayashi (1982) Purification and properties of an exo-α-amylase from Pseudomonas stutzeri. Agric. Biol. Chem. 46: 639–646.

    Article  CAS  Google Scholar 

  13. Sakano, Y., Y. Kashiwagi, and T. Kobayashi (1983) Purification of a maltotetraose-forming exo-amylase of Pseudomonas stutzeri: Two-forms of the amylase and their enzymatic properties. Agric. Biol. Chem. 47: 1761–1768.

    Article  CAS  Google Scholar 

  14. Fujita, M., K. Torigoe, T. Nakada, K. Tsusaki, M. Kubota, S. Sakai, and Y. Tsujisaka (1989) Cloning and nucleotide sequence of the gene (amyP) for maltotetraose-forming amylase from Pseudomonas stutzeri MO-19. J. bacteriol. 171: 1333–1339.

    CAS  Google Scholar 

  15. Zhang, J. and R. Zeng (2011) Molecular cloning and expression of an extracellular α-amylase gene from an Antarctic deep sea psychrotolerant Pseudomonas stutzeri strain 7193. World J. Microb. Biot. 27: 841–850.

    Article  Google Scholar 

  16. Fogarty, W. M., C. T. Kelly, A. C. Bourke, and E. M. Doyle (1994) Extracellular maltotetraose-forming amylase of Pseudomonas sp. IMD 353. Biotechnol. 16: 473–478.

    CAS  Google Scholar 

  17. Zhou, J., T. Baba, T. Takano, S. Kobayashi, and Y. Arai (1989) Nucleotide sequence of the maltotetraohydrolase gene from Pseudomonas saccharophila. FEBS. Lett. 255: 37–41.

    Article  CAS  Google Scholar 

  18. Kimura, T. and K. Horikoshi (1989) Production of amylase and pullulanase by an alkalopsychrotrophic Micrococcus sp. Agric. Biol. Chem. 53: 2963–2968.

    Article  CAS  Google Scholar 

  19. Takasaki, Y. (1983) An amylase producing maltotetraose and maltopentaose from Bacillus circulans. Agric. Biol. Chem. 47: 2193–2199.

    Article  CAS  Google Scholar 

  20. Kim, T. U., B. G. Gu, J. Y. Jeong, S. M. Byun, and Y. C. Shin (1995) Purification and characterization of a maltotetraose-forming alkaline α-amylase from an alkalophilic Bacillus strain GM8901. Appl. Environ. Microbiol. 61: 3105–3112.

    CAS  Google Scholar 

  21. Murakami, S., K. Nagasaki, H. Nishimoto, R. Shigematu, J. Umesaki, S. Takenaka, J. Kaulpiboon, M. Prousoontorn, T. Limpaseni, P. Pongsawasdi, and K. Aoki (2008) Purification and characterization of five alkaline, thermotolerant, and maltotetraose-producing α-amylases from Bacillus halodurans MS-2-5, and production of recombinant enzymes in Escherichia coli. Enz. Microbiol. Technol. 43: 321–328.

    Article  CAS  Google Scholar 

  22. Sneath, P. H. A., N. S. Mair, M. E. Sharpe, and J. G. Holt (1986) Bergey’s Manual of Systematic Bacteriology. 9th ed., pp. 1063–1065. Williams and Wilkins, Baltimore.

    Google Scholar 

  23. Miller, J. H. (1972) Experiments in Molecular Genetics. pp. 431–435. Cold spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

    Google Scholar 

  24. Miller, G. L. (1959) Use of dinitrosalycilic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  26. Bradford, M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  27. Kobayashi, H., Y. Takaki, H. Takami, and A. Inoue (2000) Characterization of α-maltotetraohydrolase produced by Pseudomonas sp. MS300 isolated from the deepest site of Mariana trench. Deep Sea Res. 16: 109–116.

    Google Scholar 

  28. Janeek, Š. and B. Štefan (1992) α-Amylases and approaches leading to their enhanced stability. FEBS Lett. 304: 1–3.

    Article  Google Scholar 

  29. Suvd, D., Z. Fujimoto, K. Takase, M. Matsumura, and H. Mizuno (2001) Crystal structure of Bacillus Stearothermophilus α-amylase: Possible factors determining the thermostability. J. Biochem. 129: 461–468.

    Article  CAS  Google Scholar 

  30. Sajedi, R. H., H. Naderi-Mahesh, K. Khajeh, R. Ahmadvand, B. A. Ranjbar, A. Asoodeh, and F. Moradian (2005) A calcium independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enz. Microb. Technol. 36: 666–671.

    Article  CAS  Google Scholar 

  31. Mehta, M. and T. Satyanarayana (2013) Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolyzing α-amylase from an extreme thermophile Geobacillus thermoleovorans. J. Mol. Catal. B: Enzym. 85: 229–238.

    Article  Google Scholar 

  32. Kikani, B. A. and S. P. Singh (2012) The stability and thermodynamic parameters of a very thermostable and calcium-independent α-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. Proc. Biochem. 47: 1791–1798.

    Article  CAS  Google Scholar 

  33. Vallee, B. L., E. A. Stein, W. N. Sumerwell, and E. H. Fischer (1959) Metal content of α-amylases of various origins. J. Biol. Chem. 234: 2901–2905.

    CAS  Google Scholar 

  34. Volkin, D. B. and A. M. Klibanov (1989) Thermal destruction processes in proteins involving cysteine. J. Biol. Chem. 89: 2945–2950.

    Google Scholar 

  35. Tanaka, A. and E. Hoshino (2003) Secondary calcium-binding parameter of Bacillus amyloliquefaciens α-amylase obtained from inhibition kinetics. J. Biosci. Bioeng. 96: 262–267.

    CAS  Google Scholar 

  36. Morishita, Y., K. Hasegawa, Y. Matsuura, Y. Katsube, M. Kubota, and S. Sakai (1997) Crystal structure of a maltotetraoseforming exo-amylase from Pseudomonas stutzeri. J. Mol. Biol. 267: 661–672.

    Article  CAS  Google Scholar 

  37. Heinen, W. and A. M. Lauwers (1976) Amylase activity and stability at high and low temperature depending on calcium and other divalent cations. Experientia Suppl. 26: 77–89.

    Article  CAS  Google Scholar 

  38. Michelin, M., T. M. Silva, V. M. Benassi, S. C. P. Nogueira, L. A. B. Moraes, J. M. Leão, J. A. Jorge, H. F. Terenzi, and M. L. T. M. Polizeli (2010) Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii. Carbohydr. Res. 345: 2348–2353.

    Article  CAS  Google Scholar 

  39. Hagihara, H., K. Igarashi, Y. Hayashi, K. Endo, K. Ikawa, K. Ozaki, S. Kawai, and S. Ito (2001) Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl. Environ. Microbiol. 67: 1744–1750.

    Article  CAS  Google Scholar 

  40. Hatada, Y., N. Masuda, M. Akita, M. Miyazaki, Y. Ohta, and K. Horikoshi (2006) Oxidatively stable maltopentaose-producing α-amylase from a deep-sea Bacillus isolate, and mechanism of its oxidative stability validated by site-directed mutagenesis. Enz. Microb. Technol. 39: 1333–1340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noomen Hmidet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maalej, H., Hmidet, N., Ghorbel-Bellaaj, O. et al. Purification and biochemical characterization of a detergent stable α-amylase from Pseudomonas stutzeri AS22. Biotechnol Bioproc E 18, 878–887 (2013). https://doi.org/10.1007/s12257-012-0862-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0862-z

Keywords

Navigation