Skip to main content
Log in

Cloning and Characterization of Cold-Adapted α-Amylase from Antarctic Arthrobacter agilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the gene encoding an α-amylase from a psychrophilic Arthrobacter agilis PAMC 27388 strain was cloned into a pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3). The recombinant α-amylase with a molecular mass of about 80 kDa was purified by using Ni2+-NTA affinity chromatography. This recombinant α-amylase exhibited optimal activity at pH 3.0 and 30 °C and was highly stable at varying temperatures (30–60 °C) and within the pH range of 4.0–8.0. Furthermore, α-amylase activity was enhanced in the presence of FeCl3 (1 mM) and β-mercaptoethanol (5 mM), while CoCl2 (1 mM), ammonium persulfate (5 mM), SDS (10 %), Triton X-100 (10 %), and urea (1 %) inhibited the enzymatic activity. Importantly, the presence of Ca2+ ions and phenylmethylsulfonyl fluoride (PMSF) did not affect enzymatic activity. Thin layer chromatography (TLC) analysis showed that recombinant A. agilis α-amylase hydrolyzed starch, maltotetraose, and maltotriose, producing maltose as the major end product. These results make recombinant A. agilis α-amylase an attractive potential candidate for industrial applications in the textile, paper, detergent, and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Franks, F., Mathias, S. F., & Hatley, R. H. (1990). Water, temperature and life. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 326, 517–531.

    Article  CAS  Google Scholar 

  2. Clarke, A. (1983). Life in cold water: the physiological ecology of polar marine ectotherms. Oceanography and Marine Biology, 21, 341–453.

    Google Scholar 

  3. Rodrigues, D. F., & Tiedje, J. M. (2008). Coping with our cold planet. Applied and Environmental Microbiology, 74, 1677–1686.

    Article  CAS  Google Scholar 

  4. Feller, G., & Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology, 1, 200–208.

    Article  CAS  Google Scholar 

  5. Gounot, A. M. (1991). Bacterial life at low temperature: physiological aspects and biotechnological implications. Journal of Applied Bacteriology, 71, 386–397.

    Article  CAS  Google Scholar 

  6. Russell, N. J. (2000). Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles, 4, 83–90.

    Article  CAS  Google Scholar 

  7. Cavicchioli, R., Charlton, T., Ertan, H., Mohd Omar, S., Siddiqui, K. S., & Williams, T. J. (2011). Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology, 4, 449–460.

    Article  CAS  Google Scholar 

  8. D’Amico, S., Claverie, P., Collins, T., Georlette, D., Gratia, E., Hoyoux, A., Meuwis, M. A., Feller, G., & Gerday, C. (2002). Molecular basis of cold adaptation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357, 917–925.

    Article  Google Scholar 

  9. Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J. P., Claverie, P., Collins, T., D’Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne, T., Meuwis, M. A., & Feller, G. (2000). Cold-adapted enzymes: from fundamentals to biotechnology. Trends in Biotechnology, 18, 103–107.

    Article  CAS  Google Scholar 

  10. Sundarram, A., & Murthy, T. P. K. (2014). α-Amylase production and applications: a review. Journal of Applied & Environmental Microbiology, 2, 166–175.

    Google Scholar 

  11. Souza, P. M. D. (2010). Application of microbial α-amylase in industry-a review. Brazilian Journal of Microbiology, 41, 850–861.

    Google Scholar 

  12. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2014). Microbial α-amylases: a biotechnological perspective. Process Biochemistry, 38, 1599–1616.

    Article  Google Scholar 

  13. Reddy, N. S., Nimmagadda, A., & Rao, K. S. (2003). An overview of the microbial α-amylase family. African Journal of Biotechnology, 2, 645–648.

    Article  CAS  Google Scholar 

  14. Mobini-Dehkordi, M., & Javan, F. A. (2012). Application of alpha-amylase in biotechnology. Journal of Biology and today’s world, 1, 15–20.

    Google Scholar 

  15. Kuddus, M., Roohi, A. J., & Ramteke, P. W. (2011). An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnology, 10, 246–258.

    Article  CAS  Google Scholar 

  16. Kuddus, M. (2010). Microbial cold-active α-amylases: from fundamentals to recent developments. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2010, 1265–1276.

    Google Scholar 

  17. Kuddus, M., Roohi, S., & Ahmad, I. Z. (2012). Cold-active extracellular α-amylase production from novel bacteria Microbacterium foliorum GA2 and Bacillus cereus GA6 isolated from Gangotri glacier. Journal of Genetic Engineering and Biotechnology, 10, 151–159.

    Article  CAS  Google Scholar 

  18. Qin, Y., Huang, Z., & Liu, Z. (2014). A novel cold-active and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles, 18, 271–281.

    Article  CAS  Google Scholar 

  19. Richard, J. S. (2004). Purifying proteins for proteomics: a laboratory manual (1st ed.). Cold Spring Harbor Laboratory Press.

  20. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Miller, G. L., Blum, R., Glennon, W. E., & Burton, A. L. (1960). Measurement of carboxymethylcellulase activity. Analytical Biochemistry, 1, 127–132.

    Article  CAS  Google Scholar 

  22. Zhang, Z., Xie, J., Zhang, F., & Linhardt, R. J. (2007). Thin layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Analytical Biochememistry, 371, 118.

    Article  CAS  Google Scholar 

  23. Siddiqui, K. S., & Cavicchioli, R. (2006). Cold-adapted enzymes. Annual Review Biochemistry, 75, 403–433.

    Article  CAS  Google Scholar 

  24. Bai, Y., Huang, H., Meng, K., Shi, P., Yang, P., Luo, H., Luo, C., Feng, Y., Zhang, W., & Yao, B. (2012). Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chemistry, 131, 1473–1478.

    Article  CAS  Google Scholar 

  25. Sharma, A., & Satyanarayana, T. (2013). Microbial acid-stable α-amylases: characteristics, genetic engineering and applications. Process Biochemistry, 48, 201–211.

    Article  CAS  Google Scholar 

  26. Mahdavi, A., Sajedi, R. H., Asghari, S. M., Taghdir, M., & Rassa, M. (2011). An analysis of temperature adaptation in cold active, mesophilic and thermophilic Bacillus α-amylases. International Journal of Biological Macromolecules, 49, 1038–1045.

    Article  CAS  Google Scholar 

  27. Ajayi, A. O., & Fagade, O. E. (2007). Heat activation and stability of amylases from Bacillus species. African Journal of Biotechnology, 6, 1181–1184.

    CAS  Google Scholar 

  28. Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). α-Amylases from microbial sources–an overview on recent developments. Food Technology and Biotechnology, 44, 173–184.

    CAS  Google Scholar 

  29. Zhang, J. W., & Zeng, R. Y. (2007). Psychrotrophic amylolytic bacteria from deep sea sediment of Prydz Bay, Antarctic: diversity and characterization of amylases. World Journal of Microbiology and Biotechnology, 23, 1551–1557.

    Article  CAS  Google Scholar 

  30. Zhang, J. W., & Zeng, R. Y. (2008). Purification and characterization of a cold-adapted α-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctic. Marine Biotechnology, 10, 75–82.

    Article  Google Scholar 

  31. Samie, N., Noghabi, K. A., Gharegozloo, Z., Zahiri, H. S., Ahmadian, G., Sharafi, H., Behrozi, R., & Vali, H. (2012). Psychrophilic α-amylase from Aeromonas veronii NS07 isolated from farm soils. Process Biochemistry, 47, 1381–1387.

    Article  CAS  Google Scholar 

  32. Lu, M., Wang, S., Fang, Y., Li, H., Liu, S., & Liu, H. (2010). Cloning, expression, purification, and characterization of cold-adapted α-amylase from Pseudoalteromonas arctica GS230. The Protein Journal, 29, 591–597.

    Article  CAS  Google Scholar 

  33. Sajedi, R. H., Naderi-Manesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B., Asoodeh, A., & Moradian, F. (2005). A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme and Microbial Technology, 36, 666–671.

    Article  CAS  Google Scholar 

  34. (2015). Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus. PLoS ONE, 1–95 doi: 10.1371/journal.pone.0121531.

  35. Malhotra, R., Noorwez, S. M., & Satyanarayana, T. (2000). Production and partial characterization of thermostable and calcium-independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Letters in Applied Microbiology, 31, 378–384.

    Article  CAS  Google Scholar 

  36. Chakraborty, S., Raut, G., Khopade, A., Mahadik, K., & Kokare, C. (2012). Study on calcium ion independent alpha-amylase from haloalkaliphilic marine Streptomyces strain a 3. Indian Journal of Biotechnology, 11, 427–437.

    CAS  Google Scholar 

  37. (2012). In Tech, Starch and microbial α-amylases: from concepts to biotechnological applications. (http://www.intechopen.com/articles/show/title/starch-and-miccrobial-amylases-from-concepts-to-biotechnological-applications).

  38. Sharma, A., & Satyanarayana, T. (2010). High maltose-forming, Ca2+-independent and acid stable α-amylase from a novel acidophilic bacterium, Bacillus acidicola. Biotechnology Letters, 32, 1503–1507.

    Article  CAS  Google Scholar 

  39. Chen, J., Chen, X., Dai, J., Xie, G., Yan, L., Lu, L., & Chen, J. (2015). Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800. International Journal of Biological Macromolecules, 80, 200–207.

    Article  CAS  Google Scholar 

  40. Emtenani, S., Asoodeh, A., & Emtenani, S. (2015). Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806. International Journal of Biological Macromolecules, 72, 290–298.

    Article  CAS  Google Scholar 

  41. Yin, Y., Mao, Y., Yin, X., Gao, B., & Wei, D. (2015). Construction of a shuttle vector for heterologous expression of a novel fungal α-amylase gene in Aspergillus oryzae. Journal of Microbiology and Biotechology, 25, 988–998.

    Article  CAS  Google Scholar 

  42. Van der Maarel, M. J., Van Der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137–155.

    Article  CAS  Google Scholar 

  43. Park, H., Kim, J., Choi, K. H., Hwang, S., Yang, S. J., Baek, S. I., & Cha, J. (2012). Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. Journal of Agricultural and Food Chemistry, 60, 8183–8189.

    Article  CAS  Google Scholar 

  44. Meissner, H., & Liebl, W. (1998). Thermotoga maritima maltosyltransferase, a novel type of maltodextrin glycosyltransferase acting on starch and malto-oligosaccharides. European Journal of Biochemistry, 258, 1050–1058.

    Article  CAS  Google Scholar 

  45. Roohi, R., Kuddus, M., & Saima, S. (2013). Cold-active detergent-stable extracellular α-amylase from Bacillus cereus GA6: biochemical characteristics and its perspectives in laundry detergent formulation. Journal of Biochemical Technology, 4, 636–644.

    CAS  Google Scholar 

  46. Lu, M. S., Fang, Y., Li, H., Liu, H., & Wang, S. (2010). Isolation of a novel cold-adapted amylase-producing bacterium and study of its enzyme production conditions. Annals of Microbiology, 60, 557–563.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. NRF-2015R1A2A2A01004733), by Golden Seed Project (213004-04-4-SBA30), Ministry of Agriculture, Ministry of Oceans and Fisheries, and by Korea Polar Research Institute grant (PE14070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-il Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Sm., Park, H. & Choi, Ji. Cloning and Characterization of Cold-Adapted α-Amylase from Antarctic Arthrobacter agilis . Appl Biochem Biotechnol 181, 1048–1059 (2017). https://doi.org/10.1007/s12010-016-2267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2267-5

Keywords

Navigation