Skip to main content
Log in

Radiation-induced retroelement-mediated genomic instability

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Ionizing radiation induces numerous biological events in mammalian cells, including cell death, mutagenesis, and genomic instability via changes in genomic structure, epigenetic regulation, and gene expression. Retroelements can also alter genomic structure based on their ability to mobilize, and their abundance and sequence similarity have been implicated in the pathogenesis of several human diseases. Here, we summarize the current knowledge on the mobilization, genomic rearrangement, epigenetic state, and transcriptional activation of retroelements in response to radiation. We further discuss the potential effects of their activation in radiation-induced genomic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, L., A. R. Snyder, and W. F. Morgan (2003) Radiationinduced genomic instability and its implications for radiation carcinogenesis. Oncogene 22: 5848–5854.

    Article  CAS  Google Scholar 

  2. Lorimore, S. A., P. J. Coates, and E. G. Wright (2003) Radiationinduced genomic instability and bystander effects: Inter-related nontargeted effects of exposure to ionizing radiation. Oncogene. 22: 7058–7069.

    Article  CAS  Google Scholar 

  3. Suzuki, K., M. Ojima, S. Kodama, and M. Watanabe (2003) Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 22: 6988–6993.

    Article  CAS  Google Scholar 

  4. Morgan, W. F., J. P. Day, M. I. Kaplan, E. M. McGhee, and C. L. Limoli (1996) Genomic instability induced by ionizing radiation. Radiat. Res. 146: 247–258.

    Article  CAS  Google Scholar 

  5. Little, J. B. (2000) Radiation carcinogenesis. Carcinogenesis 21: 397–404.

    Article  CAS  Google Scholar 

  6. Mothersill, C. and C. B. Seymour (1998) Mechanisms and implications of genomic instability and other delayed effects of ionizing radiation exposure. Mutagenesis. 13: 421–426.

    Article  CAS  Google Scholar 

  7. Trott, K. R. and M. Rosemann (2000) Molecular mechanisms of radiation carcinogenesis and the linear, non-threshold dose response model of radiation risk estimation. Radiat. Environ. Biophys. 39: 79–87.

    Article  CAS  Google Scholar 

  8. Lorimore, S. A. and E. G. Wright (2003) Radiation-induced genomic instability and bystander effects: Related inflammatorytype responses to radiation-induced stress and injury? A review. Int. J. Radiat. Biol. 79: 15–25.

    CAS  Google Scholar 

  9. Kadhim, M. A., D. A. Macdonald, D. T. Goodhead, S. A. Lorimore, S. J. Marsden, and E. G. Wright (1992) Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 355: 738–740.

    Article  CAS  Google Scholar 

  10. Lorimore, S. A., M. A. Kadhim, D. A. Pocock, D. Papworth, D. L. Stevens, D. T. Goodhead, and E. G. Wright (1998) Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation. Proc. Natl. Acad. Sci. USA. 95: 5730–5733.

    Article  CAS  Google Scholar 

  11. Morgan, W. F. (2011) Radiation-induced genomic instability. Healthy Phys. 100: 280–281.

    Article  CAS  Google Scholar 

  12. Cordaux, R. and M. A. Batzer (2009) The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10: 691–703.

    Article  CAS  Google Scholar 

  13. Romanish, M. T., C. J. Cohen, and D. L. Mager (2010) Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol. 20: 246–253.

    Article  CAS  Google Scholar 

  14. Muotri, A. R., M. C. Marchetto, N. G. Coufal, and F. H. Gage (2007) The necessary junk: New functions for transposable elements. Hum. Mol. Genet. 2: 159–167.

    Article  Google Scholar 

  15. Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, and J. Baldwin (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  CAS  Google Scholar 

  16. Ostertag, E. M. and H. H. Kazazian (2001) Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 32: 501–538.

    Article  Google Scholar 

  17. Batzer, M. A. and P. L. Deininger (2002) Alu repeats and human genomic diversity. Nat. Rev. Genet. 3: 370–379.

    Article  CAS  Google Scholar 

  18. Konkel, M. K. and M. A. Batzer (2010) Amobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin. Cancer Biol. 20: 211–221.

    Article  CAS  Google Scholar 

  19. Kazazian, H. H. Jr. (2004) Mobile elements: Drivers of genome evolution. Science 303: 1626–1632.

    Article  CAS  Google Scholar 

  20. Negrini, S., V. G. Gorgoulis, and T. D. Halazonetis (2010) Genomic instability-an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11: 220–228.

    Article  CAS  Google Scholar 

  21. Ward, J. F. (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 35: 95–125.

    Article  CAS  Google Scholar 

  22. Morgan, W. F., M. L. Fero, M. C. Land, and R. A. Winegar (1988) Inducible expression and cytogenetic effects of the EcoRI restriction endonuclease in Chinese hamster ovary cells. Mol. Cell. Biol. 8: 4204–4211.

    CAS  Google Scholar 

  23. Hoeijmakers, J. H. (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.

    Article  CAS  Google Scholar 

  24. Deininger, P. L., J. V. Moran, M. A. Batzer, and H. H. Kazazian (2003) Mobile elements and mammalian genome evolution. Curr. Opin. Genet. Dev. 13: 651–658.

    Article  CAS  Google Scholar 

  25. Goodier, J. L. and H. H. Kazazian Jr. (2008) Retrotransposons revisited: The restraint and rehabilitation of parasites. Cell 135: 23–35.

    Article  CAS  Google Scholar 

  26. Deininger, P. L. and M. A. Batzer (1999) Alu repeats and human disease. Mol. Genet. Metab. 67: 183–193.

    Article  CAS  Google Scholar 

  27. Chen, J. M., P. D. Stensom, D. N. Cooper, and C. Férec (2005) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum. Genet. 117: 411–427.

    Article  CAS  Google Scholar 

  28. Callinan, P. A. and M. A. Batzer (2006) Retrotransposable elements and human disease. Genome Dyn. 1: 104–115.

    Article  CAS  Google Scholar 

  29. Belancio, V. P., D. J. Hedges, and P. Deininger (2008) Mammalian non-LTR retrotransposons: For better or worse, in sickness and in health. Genome Res. 18: 343–358.

    Article  CAS  Google Scholar 

  30. McClintock, B. (1950) The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA. 36: 344–355.

    Article  CAS  Google Scholar 

  31. McClintock, B. (1984) The significance of responses of the genome to challenge. Science 226: 792–801.

    Article  CAS  Google Scholar 

  32. Izsvák, Z., E. E. Stüwe, D. Fiedler, A. Katzer, P. A. Jeggo, and Z. Ivics (2004) Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. Mol. Cell 13: 279–290.

    Article  Google Scholar 

  33. Farkash, E. A., G. D. Kao, S. R. Horman, and E. T. Prak (2006) Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res. 34: 1196–1204.

    Article  CAS  Google Scholar 

  34. Belgnaoui, S. M., R. G. Gosden, O. J. Semmes, and A. Haoudi (2006) Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int. 6: 13.

    Article  Google Scholar 

  35. Stoye, J. P. (2001) Endogenous retroviruses: still active after all these years? Curr. Biol. 11: 914–916.

    Article  Google Scholar 

  36. Sun, C., H. Skaletsky, S. Rozen, J. Gromoll, E. Nieschlag, R. Oates, and D. C. Page (2000) Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum. Mol. Genet. 9: 2291–2296.

    Article  CAS  Google Scholar 

  37. Kirsch, S., B. Weiss, T. L. Miner, R. H. Waterston, R. A. Clark, E. E. Eichler, C. Münch, W. Schempp, and G. Rappold (2005) Interchromosomal segmental duplications of the pericentromeric region on the human Y chromosome. Genome Res. 15: 195–204.

    Article  CAS  Google Scholar 

  38. Arruda, J. T., D. M. Silva, C. C. Silva, K. K.V.O. Moura, and A. D. da Cruz (2008) Homologous recombination between HERVs causes duplications in the AZFa region of men accidentally exposed to cesium-137 in Goiania. Genet. Mol. Res. 7: 1063–1069.

    Article  CAS  Google Scholar 

  39. Kuff, E. L. and K. K. Lueders (1988) The intracisternal A-particle gene family: Structure and functional aspects. Adv. Cancer Res. 51: 183–276.

    Article  CAS  Google Scholar 

  40. Keshet, E., R. Schiff, and A. Itin (1991) Mouse retrotransposons: a cellular reservoir of long terminal repeat (LTR) elements with diverse transcriptional specificities. Adv. Cancer Res. 56: 215–251.

    Article  CAS  Google Scholar 

  41. Ymer, S., W. Q. Tucker, C. J. Sanderson, A. J. Hapel, H. D. Campbell, and I. G. Young (1985) Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature 317: 255–258.

    Article  CAS  Google Scholar 

  42. Stocking, C., C. Löliger, M. Kawai, S. Suciu, N. Gough, and W. Ostertag (1988) Identification of genes involved in growth autonomy of hematopoietic cells by analysis of factor-independent mutants. Cell 53: 869–879.

    Article  CAS  Google Scholar 

  43. Dührsen, U., J. Stahl, and N. M. Gough (1990) In vivo transformation of factor-dependent hemopoietic cells: Role of intracisternal A-particle transposition for growth factor gene activation. EMBO J. 9: 1087–1096.

    Google Scholar 

  44. Leslie, K. B., F. Lee, and J. W. Schrader (1991) Intracisternal Atype particle-mediated activations of cytokine genes in a murine myelomonocytic leukemia: Generation of functional cytokine mRNAs by retroviral splicing events. Mol. Cell Biol. 11: 5562–5570.

    CAS  Google Scholar 

  45. Algate, P. A. and J. A. McCubrey (1993) Autocrine transformation of hemopoietic cells resulting from cytokine message stabilization after intracisternal A particle transposition. Oncogene 8: 1221–1232.

    CAS  Google Scholar 

  46. Seki, M., K. Yoshida, M. Nishimura, and K. Nemoto (1991) Radiation-induced myeloid leukemia in C3H/He mice and the effect of prednisolone acetate on leukemogenesis. Radiat. Res. 127: 146–149.

    Article  CAS  Google Scholar 

  47. Hayata, I., M. Seki, K. Yoshida, K. Hirashima, T. Sado, J. Yamagiwa, and T. Ishihara (1983) Chromosomal aberrations observed in 52 mouse myeloid leukemias. Cancer Res. 43: 367–373.

    CAS  Google Scholar 

  48. Tanaka, I. and H. Ishihara (1995) Unusual long target duplication by insertion of intracisternal A-particle element in radiationinduced acute myeloid leukemia cells in mouse. FEBS Lett. 376: 146–150.

    Article  CAS  Google Scholar 

  49. Yoder, J. A., C. P. Walsh, and T. H. Bestor (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335–340.

    Article  CAS  Google Scholar 

  50. Jaenisch, R. and A. Bird (2003) Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 33: 245–254.

    Article  CAS  Google Scholar 

  51. Goetz, W., M. N. Morgan, and J. E. Baulch (2011) The effect of radiation quality on genomic DNA methylation profiles in irradiated human cell lines. Radiat. Res. 175: 575–587.

    Article  CAS  Google Scholar 

  52. Weber, M. and D. Schübeler (2007) Genomic patterns of DNA methylation: Targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19: 273–280.

    Article  CAS  Google Scholar 

  53. Schulz, W. A., C. Steinhoff, and A. R. Florl (2006) Methylation of endogenous human retroelements in health and disease. Curr. Top. Microbiol. Immunol. 310: 211–250.

    Article  CAS  Google Scholar 

  54. Carnell, A. N. and J. I. Goodman (2003) The long (LINEs) and the short (SINEs) of it: Altered methylation as a precursor to toxicity. Toxicol. Sci. 75: 229–235.

    Article  CAS  Google Scholar 

  55. Dante, R., J. Dante-Paire, D. Rigal, and G. Roizès (1992) Methylation patterns of long interspersed repeated DNA and alphoid repetitive DNA from human cell lines and tumors. Anticancer Res. 12: 559–563.

    CAS  Google Scholar 

  56. Takai, D., Y. Yagi, N. Habib, T. Sugimura, and T. Ushijima (2000) Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn. J. Clin. Oncol. 30: 306–309.

    Article  CAS  Google Scholar 

  57. Kalinich, J. F., G. N. Catravas, and S. L. Snyder (1989) The effect of gamma radiation on DNA methylation. Radiat. Res. 117: 185–197.

    Article  CAS  Google Scholar 

  58. Tawa, R., Y. Kimura, J. Komura, Y. Miyamura, A. Kurishita, M. S. Sasaki, H. Sakurai, and T. Ono (1998) Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues. J. Radiat. Res. 39: 271–278.

    Article  CAS  Google Scholar 

  59. Kaup, S., V. Grandjean, R. Mukherjee, A. kappor, E. Keyes, C. B. Seymour, C. E. Mothersill, and P. N. Schofield (2006) Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutat. Res. 597: 87–97.

    Article  CAS  Google Scholar 

  60. Chaudhry, M. A. and R. A. Omaruddin (2011) Differential DNA Methylation Alterations in Radiation-Sensitive and -Resistant Cells. DNA Cell Biol. -Not available-, ahead of print. doi:10.1089/dna.2011.1509.

  61. Kuhmann, C., D. Weichenhan, M. Rehli, C. Plass, P. Schmezer, and O. Popanda (2011) DNA methylation changes in cells regrowing after fractioned ionizing radiation. Radiother. Oncol. 101: 116–121.

    Article  CAS  Google Scholar 

  62. Bajinskis, A., H. Lindegren, L. Johansson, M. Harms-Ringdahl, and A. Forsby (2011) Low-dose/dose-rate γ radiation depresses neural differentiation and alters protein expression profiles in neuroblastoma SH-SY5Y cells and C17.2 neural stem cells. Radiat. Res. 175: 185–192.

    Article  CAS  Google Scholar 

  63. Kumar, A., P. S. Rai, R. Upadhya, Vishwanatha, K. S. Prasada, B. S. Rao, and K. Satyamoorthy (2011) γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines. Int. J. Radiat. Biol. 87: 1086–1096.

    Article  CAS  Google Scholar 

  64. Aypar, U., W. F. Morgan, and J. E. Baulch (2011) Radiationinduced epigenetic alterations after low and high LET irradiations. Mutat. Res. 707: 24–33.

    Article  CAS  Google Scholar 

  65. Belancio, V. P., D. J. Hedges, and P. Deininger (2006) LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res. 34: 1512–21.

    Article  CAS  Google Scholar 

  66. Belancio, V. P., A. M. Roy-Engel, and P. Deininger (2008) The impact of multiple splice sites in human L1 elements. Gene 411: 38–45.

    Article  CAS  Google Scholar 

  67. Han, J. S., S. T. Szak, and J. D. Boeke (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429: 268–274.

    Article  CAS  Google Scholar 

  68. Perepelitsa-Belancio, V. and P. Deininger (2003) RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35: 363–366.

    Article  CAS  Google Scholar 

  69. Lee, J. Y., Z. Ji, and B. Tian (2008) Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes. Nucleic Acids Res. 36: 5581–5590.

    Article  CAS  Google Scholar 

  70. Chen, C., T. Ara, and D. Gautheret (2009) Using Alu elements as polyadenylation sites: A case of retroposon exaptation. Mol. Biol. Evol. 26: 327–334.

    Article  CAS  Google Scholar 

  71. Wang-Johanning, F., J. Liu, K. Rycaj, M. Huang, K. Tsai, D. G. Rosen, D. T. Chen, D. W. Lu, K. F. Barnhart, and G. L. Johanning (2007) Expression of multiple human endogenous retro virus surface envelope proteins in ovarian cancer. Int. J. Cancer. 120: 81–90.

    Article  CAS  Google Scholar 

  72. Ahn, K. and H. S. Kim (2009) Structural and quantitative expression analyses of HERV gene family in human tissues. Mol. Cells 28: 99–103.

    Article  CAS  Google Scholar 

  73. Golan, M., A. Hizi, J. H. Resau, N. Yaal-Hahoshen, H. Reichman, I. Keydar, and I. Tsarfaty (2008) Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. Neoplasia 10: 521–533.

    CAS  Google Scholar 

  74. Kalden, J. R. and M. Herrmann (1993) Autoimmune disease in humans, e.g. autoimmune rheumatic disease. Intervirol. 35: 176–185.

    CAS  Google Scholar 

  75. Lefebvre, S., B. Hubert, F. Tekaia, M. Brahic, and J. F. Bureau (1995) Isolation from human brain of six previously unreported cDNAs related to the reverse transcriptase of human endogenous retroviruses. AIDS Res. Hum. Retroviruses 11: 231–237.

    Article  CAS  Google Scholar 

  76. Stanley, S. K., T. M. Folks, and A. S. Fauci (1989) Induction of expression of human immunodeficiency virus in a chronically infected promonocytic cell line by ultraviolet irradiation. AIDS Res. Hum. Retroviruses 5: 375–384.

    Article  CAS  Google Scholar 

  77. Valerie, K., A. Singhal, J. C. Kirkham, W. S. Laster, and M. Rosenberg (1995) Activation of human immunodeficiency virus gene expression by ultraviolet light in stably transfected human cells does not require the enhancer element. Biochem. 34: 15760–15767.

    Article  CAS  Google Scholar 

  78. Faure, E., R. Emanoil-Ravier, and S. Champion (1996) UVB irradiation-induced transcription from the long terminal repeat of intracisternal A particles and UVB-induced secretion of an extracellular factor that induces transcription of the intracisternal A particles in unirradiated cells. J. Photochem. Photobiol. B. 36: 61–66.

    Article  CAS  Google Scholar 

  79. Hohenadl, C., H. Germaier, M. Walchner, M. Hagenhofer, M. Herrmann, M. Stürzl, P. Kind, R. Hehlmann, V. Erfle, and C. Leib-Mösch (1999) Transcriptional activation of endogenous retroviral sequences in human epidermal keratinocytes by UVB irradiation. J. Invest. Dermatol. 113: 587–594.

    Article  CAS  Google Scholar 

  80. Reiche, J., G. Pauli, and H. Ellerbrok (2010) Differential expression of human endogenous retrovirus K transcripts in primary human melanocytes and melanoma cell lines after UV irradiation. Melanoma Res. 20: 435–440.

    CAS  Google Scholar 

  81. Morales, J. F., E. T. Snow, and J. P. Murnane (2003) Environmental factors affecting transcription of the human L1 retrotransposon. II. Stressors. Mutagenesis. 18: 151–158.

    CAS  Google Scholar 

  82. Banerjee, G., N. Gupta, J. Tiwari, and G. Raman (2005) Ultraviolet-induced transformation of keratinocytes: Possible involvement of long interspersed element-1 reverse transcriptase. Photodermatol. Photoimmunol. Photomed. 21: 32–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JR., Kim, HS. Radiation-induced retroelement-mediated genomic instability. Biotechnol Bioproc E 17, 439–445 (2012). https://doi.org/10.1007/s12257-012-0008-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0008-3

Keywords

Navigation