Skip to main content
Log in

Biological changes of transposable elements by radiation: recent progress

  • Review
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Mobile genetic elements within genomes have been known to drive genome evolution in diverse ways. Since developing high-technology for whole-genome sequencing, many researchers have focused on not only how mobile genetic elements have affected the evolution of genes and their function, particularly of human and mammals, but also how these elements involve in gene activation or inactivation associated with a number of human diseases. Here we describe what kind of biological changes by mobile genetic elements contribute to disease, especially cancer and present an overview of what is known about this large, and largely unexplored, segment of the genome. Finally, we discuss understanding the genomic changes or cellular responses to genotoxic stress such as radiation may permit to implicate for potential clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agoni L, Lenz J, Guha C (2013) Variant splicing and influence of ionizing radiation on human endogenous retrovirus K (HERV-K) transcripts in cancer cell lines. PLoS One 8:e76472

  • Ahn K, Kim HS (2009) Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 28:99–103

    Article  CAS  PubMed  Google Scholar 

  • Alves PM, Levy N, Stevenson BJ, Bouzourene H, Theiler G, Bricard G, Viatte S (2008) Identification of tumor-associated antigens by large-scale analysis of genes expressed in human colorectal cancer. Cancer Immun 8:11

    PubMed Central  PubMed  Google Scholar 

  • Andersson AC, Merza M, Venables P, Ponten F, Sundstrom J, Cohen M, Larsson E (1996) Elevated levels of the endogenous retrovirus ERV3 in human sebaceous glands. J Invest Dermatol 106:125–128

    Article  CAS  PubMed  Google Scholar 

  • Andersson AC, Svensson AC, Rolny C, Andersson G, Larsson E (1998) Expression of human endogenous retrovirus ERV3 (HERV-R) mRNA in normal and neoplastic tissues. Int J Oncol 12:309–313

    CAS  PubMed  Google Scholar 

  • Andersson AC, Venables PJ, Tonjes RR, Scherer J, Eriksson L, Larsson E (2002) Developmental expression of HERV-R (ERV3) and HERV-K in human tissue. Virology 297:220–225

    Article  CAS  PubMed  Google Scholar 

  • Antony JM, Deslauriers AM, Bhat RK, Ellestad KK, Power C (2011) Human endogenous retroviruses and multiple sclerosis: innocent bystanders or disease determinants? Biochim Biophys Acta 1812:162–176

    Article  CAS  PubMed  Google Scholar 

  • Armbruester V, Sauter M, Krautkraemer E, Meese E, Kleiman A, Best B, Roemer K (2002) A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res 8:1800–1807

    CAS  PubMed  Google Scholar 

  • Arruda JT, Silva DM, Silva CC, Moura KK, da Cruz AD (2008) Homologous recombination between HERVs causes duplications in the AZFa region of men accidentally exposed to cesium-137 in Goiania. Genet Mol Res 7:1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Bailey JA, Liu G, Eichler EE (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73:823–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee G, Gupta N, Tiwari J, Raman G (2005) Ultraviolet-induced transformation of keratinocytes: possible involvement of long interspersed element-1 reverse transcriptase. Photodermatol Photoimmunol Photomed 21:32–39

    Article  CAS  PubMed  Google Scholar 

  • Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer 5:867–875

    Article  CAS  PubMed  Google Scholar 

  • Belancio VP, Roy-Engel AM, Deininger PL (2010) All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol 20:200–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belgnaoui SM, Gosden RG, Semmes OJ, Haoudi A (2006) Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int 6:13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Belshaw R, Dawson AL, Woolven-Allen J, Redding J, Burt A, Tristem M (2005) Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 79:12507–12514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bessis D, Moles JP, Basset-Seguin N, Tesniere A, Arpin C, Guilhou JJ (2004) Differential expression of a human endogenous retrovirus E transmembrane envelope glycoprotein in normal, psoriatic and atopic dermatitis human skin. Br J Dermatol 151:737–745

  • Bismar MM, Sinicrope FA (2002) Radiation enteritis. Curr Gastroenterol Rep 4:361–365

    Article  PubMed  Google Scholar 

  • Boese A, Sauter M, Galli U, Best B, Herbst H, Mayer J, Kremmer E (2000) Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Oncogene 19:4328–4336

    Article  CAS  PubMed  Google Scholar 

  • Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    Article  CAS  PubMed  Google Scholar 

  • Cohen CJ, Rebollo R, Babovic S, Dai EL, Robinson WP, Mager DL (2011) Placenta-specific expression of the interleukin-2 (IL-2) receptor beta subunit from an endogenous retroviral promoter. J Biol Chem 286:35543–35552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Parseval N, Lazar V, Casella JF, Benit L, Heidmann T (2003) Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 77:10414–10422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Potter P, Levecq L, Godfraind C, Renard L (2006) Primary orbital melanoma treated with iodine-125 plaque radiotherapy. Am J Ophthalmol 142:864–866

    Article  PubMed  Google Scholar 

  • Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193

    Article  CAS  PubMed  Google Scholar 

  • Depil S, Roche C, Dussart P, Prin L (2002) Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16:254–259

  • Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, Heidmann T (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16:1548–1556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dungey FA, Caldecott KW, Chalmers AJ (2009) Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther 8:2243–2254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  CAS  PubMed  Google Scholar 

  • Erven K, Van Limbergen E (2007) Regional lymph node irradiation in breast cancer. Future Oncol 3:343–352

    Article  PubMed  Google Scholar 

  • Farkash EA, Kao GD, Horman SR, Prak ET (2006) Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res 34:1196–1204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faure E, Emanoil-Ravier R, Champion S (1996) UVB irradiation-induced transcription from the long terminal repeat of intracisternal A particles and UVB-induced secretion of an extracellular factor that induces transcription of the intracisternal A particles in unirradiated cells. J Photochem Photobiol B 36:61–66

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  CAS  PubMed  Google Scholar 

  • Frank O, Giehl M, Zheng C, Hehlmann R, Leib-Mosch C, Seifarth W (2005) Human endogenous retrovirus expression profiles in samples from brains of patients with schizophrenia and bipolar disorders. J Virol 79:10890–10901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallus GN, Cardaioli E, Rufa A, Da Pozzo P, Bianchi S, D’Eramo C, Collura M (2010) Alu-element insertion in an OPA1 intron sequence associated with autosomal dominant optic atrophy. Mol Vis 16:178–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gifford R, Tristem M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26:291–315

    Article  CAS  PubMed  Google Scholar 

  • Gimenez J, Montgiraud C, Pichon JP, Bonnaud B, Arsac M, Ruel K, Bouton O (2010) Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res 38:2229–2246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golan M, Hizi A, Resau JH, Yaal-Hahoshen N, Reichman H, Keydar I, Tsarfaty I (2008) Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. Neoplasia 10:521–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G (1998) Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598

    Article  CAS  PubMed  Google Scholar 

  • Gosenca D, Gabriel U, Steidler A, Mayer J, Diem O, Erben P, Fabarius A (2012) HERV-E-mediated modulation of PLA2G4A transcription in urothelial carcinoma. PLoS ONE 7:e49341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han K, Lee J, Meyer TJ, Wang J, Sen SK, Srikanta D, Liang P (2007) Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet 3:1939–1949

    Article  CAS  PubMed  Google Scholar 

  • Herbst H, Sauter M, Mueller-Lantzsch N (1996) Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am J Pathol 149:1727–1735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hohenadl C, Germaier H, Walchner M, Hagenhofer M, Herrmann M, Sturzl M, Kind P (1999) Transcriptional activation of endogenous retroviral sequences in human epidermal keratinocytes by UVB irradiation. J Investig Dermatol 113:587–594

  • Hughes JF, Coffin JM (2004) Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc Natl Acad Sci USA 101:1668–1672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huh JW, Kim DS, Kang DW, Ha HS, Ahn K, Noh YN, Min DS (2008) Transcriptional regulation of GSDML gene by antisense-oriented HERV-H LTR element. Arch Virol 153:1201–1205

    Article  CAS  PubMed  Google Scholar 

  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Qin S, Chen X, Song Y, Li-Ling J, Xu X, Ma F (2012) Evolutionary rate of human tissue-specific genes are related with transposable element insertions. Genetica 140:513–523

    Article  PubMed  Google Scholar 

  • Johnston JB, Silva C, Holden J, Warren KG, Clark AW, Power C (2001) Monocyte activation and differentiation augment human endogenous retrovirus expression: implications for inflammatory brain diseases. Ann Neurol 50:434–442

    Article  CAS  PubMed  Google Scholar 

  • Jung YD, Ahn K, Kim YJ, Bae JH, Lee JR, Kim HS (2013) Retroelements: molecular features and implications for disease. Genes Genet Syst 88:31–43

    Article  CAS  PubMed  Google Scholar 

  • Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH (2001) Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci USA 98:4634–4639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kass DH, Batzer MA, Deininger PL (1995) Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution. Mol Cell Biol 15:19–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Moran JV (1998) The impact of L1 retrotransposons on the human genome. Nat Genet 19:19–24

    Article  CAS  PubMed  Google Scholar 

  • Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HS, Wadekar RV, Takenaka O, Winstanley C, Mitsunaga F, Kageyama T, Hyun BH (1999) SINE-R.C2 (a Homo sapiens specific retroposon) is homologous to CDNA from postmortem brain in schizophrenia and to two loci in the Xq21.3/Yp block linked to handedness and psychosis. Am J Med Genet 88:560–566

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Ahn K, Kim DS (2008) Quantitative expression of the HERV-W env gene in human tissues. Arch Virol 153:1587–1591

    Article  CAS  PubMed  Google Scholar 

  • Kolomietz E, Meyn MS, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35:97–112

    Article  CAS  PubMed  Google Scholar 

  • Kolosha VO, Martin SL (1997) In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc Natl Acad Sci USA 94:10155–10160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H, Saito K (1999) Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8:2303–2309

    Article  CAS  PubMed  Google Scholar 

  • Koturbash I, Boyko A, Rodriguez-Juarez R, McDonald RJ, Tryndyak VP, Kovalchuk I, Pogribny IP (2007) Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis 28:1831–1838

  • Kowalski PE, Freeman JD, Mager DL (1999) Intergenic splicing between a HERV-H endogenous retrovirus and two adjacent human genes. Genomics 57:371–379

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Landry JR, Rouhi A, Medstrand P, Mager DL (2002) The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter. Mol Biol Evol 19:1934–1942

    Article  CAS  PubMed  Google Scholar 

  • Larsson E, Kato N, Cohen M (1989) Human endogenous proviruses. Curr Top Microbiol Immunol 148:115–132

    CAS  PubMed  Google Scholar 

  • Lee YN, Bieniasz PD (2007) Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 3:e10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee J, Han K, Meyer TJ, Kim HS, Batzer MA (2008) Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons. PLoS ONE 3:e4047

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee JR, Huh JW, Kim DS, Ha HS, Ahn K, Kim YJ, Chang KT (2009) Lineage specific evolutionary events on SFTPB gene: Alu recombination-mediated deletion (ARMD), exonization, and alternative splicing events. Gene 435:29–35

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, Lohr JG (2012) Landscape of somatic retrotransposition in human cancers. Science 337:967–971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Little JB (1999) Induction of genetic instability by ionizing radiation. C R Acad Sci III 322:127–134

    Article  CAS  PubMed  Google Scholar 

  • Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21:397–404

    Article  CAS  PubMed  Google Scholar 

  • Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  CAS  PubMed  Google Scholar 

  • Mayer J, Meese E (2005) Human endogenous retroviruses in the primate lineage and their influence on host genomes. Cytogenet Genome Res 110:448–456

    Article  CAS  PubMed  Google Scholar 

  • Mayer J, Stuhr T, Reus K, Maldener E, Kitova M, Asmus F, Meese E (2005) Haplotype analysis of the human endogenous retrovirus locus HERV-K(HML-2.HOM) and its evolutionary implications. J Mol Evol 61:706–715

    Article  CAS  PubMed  Google Scholar 

  • Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y (1996) Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 13:245–247

    Article  CAS  PubMed  Google Scholar 

  • Miller OJ, Schnedl W, Allen J, Erlanger BF (1974) 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251:636–637

    Article  CAS  PubMed  Google Scholar 

  • Mine M, Chen JM, Brivet M, Desguerre I, Marchant D, de Lonlay P, Bernard A (2007) A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum Mutat 28:137–142

    Article  CAS  PubMed  Google Scholar 

  • Morales JF, Snow ET, Murnane JP (2003) Environmental factors affecting transcription of the human L1 retrotransposon. II. Stressors. Mutagenesis 18:151–158

    Article  CAS  PubMed  Google Scholar 

  • Morozov VA, Dao Thi VL, Denner J (2013) The transmembrane protein of the human endogenous retrovirus–K (HERV-K) modulates cytokine release and gene expression. PLoS ONE 8:e70399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myakishev M, Polesskaya O, Kulichkova V, Baranova A, Gause L, Konstantinova I (2008) PCR-based detection of Pol III-transcribed transposons and its application to the rodent model of ultraviolet response. Cell Stress Chaperones 13:111–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narita N, Nishio H, Kitoh Y, Ishikawa Y, Ishikawa Y, Minami R, Nakamura H (1993) Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 91:1862–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohshima K, Okada N (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 110:475–490

    Article  CAS  PubMed  Google Scholar 

  • O’Neill RJ, O’Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  PubMed  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538

    Article  CAS  PubMed  Google Scholar 

  • Papadimitriou E, Mikelis C, Lampropoulou E, Koutsioumpa M, Theochari K, Tsirmoula S, Theodoropoulou C (2009) Roles of pleiotrophin in tumor growth and angiogenesis. Eur Cytokine Netw 20:180–190

    CAS  PubMed  Google Scholar 

  • Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177:311–327

    Article  CAS  PubMed  Google Scholar 

  • Pise-Masison CA, Marriott SJ (2009) Memories of John N. Brady: scientist, mentor and friend. Retrovirology 6:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Rhyu DW, Kang YJ, Ock MS, Eo JW, Choi YH, Kim WJ, Leem SH (2014) Expression of human endogenous retrovirus env genes in the blood of breast cancer patients. Int J Mol Sci 15:9173–9183

  • Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL (2007) Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet 3:e10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Romanish MT, Cohen CJ, Mager DL (2010) Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol 20:246–253

    Article  CAS  PubMed  Google Scholar 

  • Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324:1670–1673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross J (1996) Comments on the article “Persistent confusion of total entropy and chemical system entropy in chemical thermodynamics” [(1996) Proc. Natl. Acad. Sci. USA 93, 7452–7453]. Proc Natl Acad Sci USA 93: 14314; discussion 14315

  • Roy AM, Carroll ML, Nguyen SV, Salem AH, Oldridge M, Wilkie AO, Batzer MA (2000) Potential gene conversion and source genes for recently integrated Alu elements. Genome Res 10:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Ruda VM, Akopov SB, Trubetskoy DO, Manuylov NL, Vetchinova AS, Zavalova LL, Nikolaev LG (2004) Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res 104:11–16

    Article  CAS  PubMed  Google Scholar 

  • Ruprecht K, Ferreira H, Flockerzi A, Wahl S, Sauter M, Mayer J, Mueller-Lantzsch N (2008) Human endogenous retrovirus family HERV-K(HML-2) RNA transcripts are selectively packaged into retroviral particles produced by the human germ cell tumor line Tera-1 and originate mainly from a provirus on chromosome 22q11.21. J Virol 82:10008–10016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • Santangelo AM, de Souza FS, Franchini LF, Bumaschny VF, Low MJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3:1813–1826

    Article  CAS  PubMed  Google Scholar 

  • Schanab O, Humer J, Gleiss A, Mikula M, Sturlan S, Grunt S, Okamoto I (2011) Expression of human endogenous retrovirus K is stimulated by ultraviolet radiation in melanoma. Pigment Cell Melanoma Res 24:656–665

  • Schmitt K, Reichrath J, Roesch A, Meese E, Mayer J (2013) Transcriptional profiling of human endogenous retrovirus group HERV-K(HML-2) loci in melanoma. Genome Biol Evol 5:307–328

  • Sela N, Kim E, Ast G (2010) The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol 11:R59

    Article  PubMed Central  PubMed  Google Scholar 

  • Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, Dyer M (2006) Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 79:41–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh S, Kaye S, Francis N, Peston D, Gore M, McClure M, Bunker C (2013) Human endogenous retrovirus K (HERV-K) rec mRNA is expressed in primary melanoma but not in benign naevi or normal skin. Pigment Cell Melanoma Res 26:426–428

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB, Harris RS (2012) Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22:2328–2338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemolhosseini S, Koscheck T (2007) Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med (Berl) 85:23–38

    Article  CAS  Google Scholar 

  • Sun Q, Yang J, Xing G, Sun Q, Zhang L, He F (2008) Expression of GSDML associates with tumor progression in uterine cervix cancer. Transl Oncol 1:73–83

    Article  PubMed Central  PubMed  Google Scholar 

  • Sverdlov ED (2000) Retroviruses and primate evolution. BioEssays 22:161–171

    Article  CAS  PubMed  Google Scholar 

  • Tanaka I, Ishihara H (1995) Unusual long target duplication by insertion of intracisternal A-particle element in radiation-induced acute myeloid leukemia cells in mouse. FEBS Lett 376:146–150

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Nakatani Y, Hamada N, Jinno-Oue A, Shimizu N, Wada S, Funayama T (2012) Ionising irradiation alters the dynamics of human long interspersed nuclear elements 1 (LINE1) retrotransposon. Mutagenesis 27:599–607

  • Teneng I, Stribinskis V, Ramos KS (2007) Context-specific regulation of LINE-1. Genes Cells 12:1101–1110

  • Tsirmoula S, Dimas K, Hatziapostolou M, Lamprou M, Ravazoula P, Papadimitriou E (2012) Implications of pleiotrophin in human PC3 prostate cancer cell growth in vivo. Cancer Sci 103:1826–1832

    Article  CAS  PubMed  Google Scholar 

  • Turner G, Barbulescu M, Su M, Jensen-Seaman MI, Kidd KK, Lenz J (2001) Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol 11:1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, Roach KC (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295:1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL (2003) Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene 22:1528–1535

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National R&D program (50596-2014) through the Dongnam Institute of Radiological & Medical Sciences (DIRAMS) funded by the Korean Ministry of Education, Science, and Technology.

Conflict of interest

The authors declare no conflict interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Oh Kim or Joo Mi Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, JH., Eo, J., Kim, TO. et al. Biological changes of transposable elements by radiation: recent progress. Genes Genom 37, 125–133 (2015). https://doi.org/10.1007/s13258-014-0256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0256-z

Keywords

Navigation