Skip to main content
Log in

Production of bioethanol from sugarcane bagasse using NH4OH-H2O2 pretreatment and simultaneous saccharification and co-fermentation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we investigated the production of bioethanol from sugarcane bagasse (SCB) using an NH4OH-H2O2 pretreatment and simultaneous saccharification and co-fermentation (SScF). Response surface methodology and a 23 Box-Behnken design were used to evaluate the effect of different liquid mixture concentrations, liquid-to-solid ratios (LSRs) and pretreatment temperatures on the production of ethanol. The liquid mixture concentration and LSR significantly influenced the fermentation efficiency. Based on ridge max analysis, the following pretreatment conditions resulted in a fermentation efficiency of 95.79 ± 0.01%: liquid mixture concentration 53%, LSR 28, and a temperature of 63°C. A morphological analysis performed using scanning electron microscopy (SEM) and chemical characterization revealed that these pretreatment conditions were effective in disrupting the sugarcane fibers and removing lignin. Ethanol fermentation with the pretreated SCB using SScF in yeast SHY 07-1 resulted in an ethanol concentration of 14.65 ± 0.17 g/L, an ethanol yield of 0.48 ± 0.01 g/g, and an ethanol productivity of 0.12 ± 0.01 g/(L/h), which represents increases of 106.02, 89.98, and 107.02%, respectively, over the values obtained from SScF with untreated SCB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beukes, N. and B. I. Pletschke (2010) Effect of lime pretreatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases. Bioresour. Technol. 101: 4472–4478.

    Article  CAS  Google Scholar 

  2. Rintu, B. and P. Ashok (2002) Bio-industial applications of sugarcane bagasse: A technological perspective. Int. Sugar. J. 1: 3–7.

    Google Scholar 

  3. Liang L., Y. P. Zhang, L. Zhang, M. J. Zhu, S. Z. Liang, and Y. N. Huang (2008) Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses. J. Ind. Microbiol. Biotechnol. 35: 1605–1613.

    Article  CAS  Google Scholar 

  4. Zhao, X. B., F. Peng, K. K. Cheng, and D. H. Liu (2009) Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-preacetic acid pretreatment. Enz. Microb. Technol. 44: 17–23.

    Article  CAS  Google Scholar 

  5. Cardona, C. A., J. A. Quintero, and I. C. Paz (2010) Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresour. Technol. 101: 4754–4766.

    Article  CAS  Google Scholar 

  6. Martin, C., H. B. Klinke, and A. B. Thomsen (2006) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enz. Microb. Technol. 40: 426–432.

    Article  Google Scholar 

  7. Paiva, J. M. F. and E. Frollini (2001) Sugarcane bagasse reinforced phenolic and lignophenolic composites. J. App. Polym. Sci. 83: 880–888.

    Article  Google Scholar 

  8. Pandy, A., C. R. Soccol, P. Nigam, and V. T. Socclo (2000) Biotechnological potential of agro-industrial residues I: sugarcane bagasse. Bioresour. Technol. 74: 69–80.

    Article  Google Scholar 

  9. Sun, Y. and J. Y. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 83: 1–11.

    Article  CAS  Google Scholar 

  10. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch (2004) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686.

    Article  Google Scholar 

  11. Han, M., S. K. Moon, Y. Kim, Y. Kim, B. Chung, and G. W. Choi (2009) Bioethanol production from ammonia percolated wheat straw. Biotechnol. Bioproc. Eng. 14: 606–611.

    Article  CAS  Google Scholar 

  12. Chang, V. S. and M. T. Holtzapple (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84: 5–37.

    Article  Google Scholar 

  13. Chang, M. C. Y. (2007) Harnessing energy from plant biomass. Curr. Opin. Chem. Biol. 11: 677–684.

    Article  CAS  Google Scholar 

  14. Karr, W. E. and M. T. Holtzapple (2000) Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenerg. 18: 189–199.

    Article  Google Scholar 

  15. Peng, F., J. L. Rent, F. Xu, J. Bian, P. Peng, and R. C. Sun (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J. Agric. Food Chem. 57: 6305–6317.

    Article  CAS  Google Scholar 

  16. Dominguez, J. M., N. J. Cao, C. S. Gong, and G. T. Tsao (1997) Dilute acid hemicellulos hydrolysates from corn cobs for xylitol production by yeast. Bioresour. Technol. 61: 85–90.

    Article  CAS  Google Scholar 

  17. Sun, R., C., J. M. Lawther, and W. B. Banks (1995) Influence of alkaline pre-treatments on the cell wall components of wheat straw. Ind. Crops Prod. 42: 127–145.

    Article  Google Scholar 

  18. Kim, T. H. and Y. Y. Lee (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. 121–124: 1119–1131.

    Article  Google Scholar 

  19. Kim, T. H., F. Taylor, and K. B. Hicks (2007) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour. Technol. 99: 5694–5702.

    Article  Google Scholar 

  20. Mills, T. Y., N. R. Sandoval, and R. T. Gill (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2: 1–11.

    Article  Google Scholar 

  21. Kang, H. K., N. M. Kim, G. J. Kim, E. S. Seo, H. J. Ryu, S. Yun, H. C. Choi, D. F. Day, J. Kim, D. L. Cho, and D. Kim (2011) Enhanced saccharification of rice straw using hypochloritehydrogen peroxide. Biotechnol. Bioproc. Eng. 16: 273–281.

    Article  CAS  Google Scholar 

  22. Borges, E. R. and P. J. Nei (2011) Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. J. Ind. Microbiol. Biotechnol. 38: 1001–1011.

    Article  CAS  Google Scholar 

  23. Zhu, M. J., Z. S. Zhu, and X. H. Li (2011) Bioconversion of paper sludge with low cellulosic content to ethanol by separate hydrolysis and fermentation. Afr. J. Biotechnol. 10: 15072–15083.

    CAS  Google Scholar 

  24. Zhu, Z. S., X. H. Li, Q. M. Zheng, Z. Zhang, Y. Yu, J. F. Wang, S. Z. Liang, and M. J. Zhu (2011) Bioconversion of a mixture of paper sludge and extraction liquor from water prehydrolysis of Eucalyptus chips to ethanol using separate hydrolysis and fermentation. Bioresources. 6: 5012–5026.

    CAS  Google Scholar 

  25. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures. http://www.nrel.gov/biomass/analytical_procedures.html.

  26. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  27. Lynd, L. R., H. G. Grethlein, and R. H. Wolkin (1989) Fermentation of cellulosic substrate in batch and continuous culture by Clostridium thermocellum. Appl. Environ. Microb. 55: 3131–3139.

    CAS  Google Scholar 

  28. Laopaiboon, P., A. Thani, V. Leelavacharamas, and L. Laopaiboon (2010) Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol. 101: 1036–1043.

    Article  CAS  Google Scholar 

  29. Rocha, G., J. M., C. Martin, I. B. Soares, A. M. S. Maior, H. M. Baudel, and C. A. M. Abreu (2011) Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenerg. 35: 663–670.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, ZS., Zhu, MJ., Xu, WX. et al. Production of bioethanol from sugarcane bagasse using NH4OH-H2O2 pretreatment and simultaneous saccharification and co-fermentation. Biotechnol Bioproc E 17, 316–325 (2012). https://doi.org/10.1007/s12257-011-0472-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0472-1

Keywords

Navigation