Skip to main content
Log in

Gastrointestinal Mucositis: The Role of MMP-Tight Junction Interactions in Tissue Injury

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Chemotherapy for cancer causes significant gut toxicity known as mucositis. The pathogenesis of mucositis is ill defined. Recent clinical research guidelines have highlighted epithelial junctional complexes as emerging targets within mucositis research. Given the robust biological evidence linking tight junctions and matrix metalloproteinases, key mediators of mucositis, tight junction proteins have received significant attention. Despite this, the link between tight junctions, matrix metalloproteinases and mucositis development is yet to be established. This critical review therefore aims to describe the role of matrix metalloproteinases in mucositis, and how matrix metalloproteinase-dependent tight junction disruption may contribute to the pathobiology of mucositis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Keefe D, Schubert M et al (2007) Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer 109:820–831

    Article  CAS  PubMed  Google Scholar 

  2. Sonis S (2004) The pathobiology of mucositis. Nat Rev Cancer 4:277–284

    Article  CAS  PubMed  Google Scholar 

  3. Sonis S, Shklar T et al (1990) An animal model for mucositis induced by cancer chemotherapy. Oral Surg Oral Med Oral Pathol 69:437–443

    Article  CAS  PubMed  Google Scholar 

  4. Paris F, Fuks Z et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  CAS  PubMed  Google Scholar 

  5. Logan R, Stringer A et al (2009) Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered? Cancer Chemother Pharmacol 63:239–251

    Article  CAS  PubMed  Google Scholar 

  6. Stringer A, Gibson R et al (2009) Irinotecan-induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile. Int J Exp Pathol 90:489–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Stringer A, Gibson R et al (2009) Chemotherapy-induced changes to microflora: evidence and implications of change. Curr Drug Metab 10:79–83

    Article  CAS  PubMed  Google Scholar 

  8. Al-Dasooqi N, Bowen J et al (2011) Irinotecan-induced alterations in intestinal cell kinetics and extracellular matrix component expression in the dark agouti rat. Int J Exp Pathol 92:357–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Al-Dasooqi N, Gibson R et al (2010) Matrix metalloproteinases are possible mediators for the development of alimentary tract mucositis in the DA rat. Exp Biol Med 235:1244–1256

    Article  CAS  Google Scholar 

  10. Ma T, Iwamoto G et al (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286:G367–G376

    Article  CAS  PubMed  Google Scholar 

  11. Blijlevens NM, Donnelly JP, de Pauw BE (2005) Prospective evaluation of gut mucosal barrier injury following various myeloablative regimens for haematopoietic stem cell transplant. Bone Marrow Transplant 35(7):707–711

    Article  CAS  PubMed  Google Scholar 

  12. Walsh-Reitz M, Huang E et al (2005) AMP-18 protects barrier function of colonic epithelial cells: role of tight junction proteins. Am J Physiol Gastrointest Liver Physiol 289:G163–G171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wardill H, Bowen J, Gibson R (2013) Chemotherapy-induced gut toxicity: are alterations to intestinal tight junctions pivotal? Cancer Chemother Pharmacol 70:627–635

    Article  Google Scholar 

  14. Hollander D (1999) Intestinal permeability, leaky gut, and intestinal disorders. Curr Gastroenterol Rep 1:410–416

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778(3):729–756

    Article  CAS  PubMed  Google Scholar 

  16. Keefe D, Cummins AG et al (1997) Effect of high-dose chemotherapy on intestinal permeability in humans. Clin Sci 92:385–389

    CAS  PubMed  Google Scholar 

  17. Keefe D (2000) Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 47:632–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hamada K, Shitara Y et al (2010) Zonula Occluden-1 alterations and enhances intestinal permeability in methotrexate-treated rats. Cancer Chemother Pharmacol 66:1031–1038

    Article  CAS  PubMed  Google Scholar 

  19. Nakao T, Kurita N et al (2012) Irinotecan injures tight junction and causes bacterial translocation in rat. J Surg Res 173(2):341–347

    Article  CAS  PubMed  Google Scholar 

  20. Youmba SB, Belmonte L et al (2011) Methotrexate Modulates Tight Junctions Through NF-kappaB, MEK and JNK Pathways. J Pediatr Gastroenterol Nutr

  21. Stringer A, Al-Dasooqi N et al (2013) Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Support Care Cancer. [Epub ahead of print]

  22. Sengupta N, MacDonald T (2007) The role of matrix metalloproteinases in stromal/epithelial interactions in the gut. Physiology 22:401–409

    Article  CAS  PubMed  Google Scholar 

  23. Clark I, Swingler T et al (2008) The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40:1362–1378

    Article  CAS  PubMed  Google Scholar 

  24. Manicone A, McGuire J (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19:34–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wolf M, Albrecht S, Marki C (2008) Proteolytic processing of Chemokines: implications in physiological and pathological conditions. Int J Biochem Cell Biol 40:1185–1198

    Article  CAS  PubMed  Google Scholar 

  26. Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix metalloproteinases. Amino Acids 41:271–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chakraborti S, Mandal M et al (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  CAS  PubMed  Google Scholar 

  28. Pender S, MacDonald T (2004) Matrix metalloproteinases and the gut- new roles for old enzymes. Curr Opin Pharmacol 4:546–550

    Article  CAS  PubMed  Google Scholar 

  29. Van Wart H, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87:5578–5582

    Article  PubMed Central  PubMed  Google Scholar 

  30. Dhaouadi T, Sfar I et al (2007) Role of immune system, apoptosis and angiogenesis in pathogenesis of rheumatoid arthritis and joint destruction, a systematic review. Tunis Med 85:991–998

    PubMed  Google Scholar 

  31. Sorsa T, Tjaderhane L et al (2006) Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med 38:306–321

    Article  CAS  PubMed  Google Scholar 

  32. Vandenbroucke R, Dejonckheere E, and Libert C (2011) A therapeutic role for MMP inhibitors in lung diseases? Eur Respir J [Epub ahead of print]

  33. Parks W, Wilson C, Lopez-Boado Y (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    Article  CAS  PubMed  Google Scholar 

  34. Shipley J, Wesselschmidt R et al (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci 93:3942–3946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Warner R, Lewis C et al (2001) The role of metalloelastase in immune complex-induced acute lung injury. Am J Pathol 158:2139–2144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lanone S, Zheng T et al (2002) Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling. J Clin Invest 110:463–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Itoh T, Matsuda H et al (2002) The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis. J Immunol 169:2643–2647

    Article  CAS  PubMed  Google Scholar 

  38. Mudgett J, Hutchinson N et al (1998) Susceptability of stromelysin-1 deficient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum 41:110–121

    Article  CAS  PubMed  Google Scholar 

  39. Corry D, Rishi K et al (2002) Decreased allergic lung inflammatory cell egression and increased susceptability to asphyxiation in MMP2-deficiency. Nat Immunol 3:347–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hartzell W, Shapiro S (1999) Marcophage elastase prevents Gemella morbillorum infection and improves outcome following murine bone marrow transplantation. Chest 116:31S–32S

    Article  CAS  PubMed  Google Scholar 

  41. Burke B (2004) The role of matrix metalloproteinase 7 in innate immunity. Immunobiology 209:51–56

    Article  CAS  PubMed  Google Scholar 

  42. Page-McCaw A, Ewald A, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Will C, Fromm M, Muller D (2008) Claudin tight junction proteins: novel aspects in paracellular transport. Perit Dial Int J Int Soc Perit Dial 28(6):577–584

    CAS  Google Scholar 

  44. Anderson JM, Balda MS, Fanning AS (1993) The structure and regulation of tight junctions. Curr Opin Cell Biol 5(5):772–778

    Article  CAS  PubMed  Google Scholar 

  45. Fanning AS, Anderson JM (2009) Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 1165:113–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Katsuno T, Umeda K et al (2008) Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19(6):2465–2475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Shin K, Margolis B (2006) ZOning out tight junctions. Cell 126(4):647–649

    Article  CAS  PubMed  Google Scholar 

  48. Umeda K, Ikenouchi J et al (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126(4):741–754

    Article  CAS  PubMed  Google Scholar 

  49. Bertiaux-Vandaele N, Youmba SB et al (2011) The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 106(12):2165–2173

    Article  CAS  PubMed  Google Scholar 

  50. Schulzke JD, Ploeger S et al (2009) Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 1165:294–300

    Article  PubMed  Google Scholar 

  51. Turner J (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809

    Article  CAS  PubMed  Google Scholar 

  52. Cummins PM (2012) Occludin: one protein, many forms. Mol Cell Biol 32(2):242–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Schulzke JD, Gitter AH et al (2005) Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta 1669(1):34–42

    Article  CAS  PubMed  Google Scholar 

  54. Ulluwishewa D, Anderson RC et al (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141(5):769–776

    Article  CAS  PubMed  Google Scholar 

  55. Fazeny-Dorner B, Veitl M et al (2002) Alterations in intestinal permeability following the intensified polydrug-chemotherapy IFADIC (ifosfamide, Adriamycin, dacarbazine). Cancer Chemother Pharmacol 49(4):294–298

    Article  PubMed  Google Scholar 

  56. Wardill H, Bowen J and Gibson R (2013) Irinotecan disrupts tight junction protein occludin in the rat small intestine, in Multinational Association for Supprotive Care in Cancer. J Support Care Cancer. Berlin, Germany

  57. Bauer A, Burgers H et al (2010) Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 30:837–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Lischper M, Beuck S et al (2010) Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Brain Res 1326:114–127

    Article  CAS  PubMed  Google Scholar 

  59. Vermeer P, Denker J et al (2009) MMP9 modulates tight junction integrity and cell viability in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 296:L751–L762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Blecharz K, Haghikia A et al (2010) Glucocorticoid effects on endothelial barrier function in the murine brain endothelial cell line cEND incubated with sera from patients with multiple sclerosis. Mult Scler 16:293–302

    Article  CAS  PubMed  Google Scholar 

  61. Liu W, Hendren J et al (2009) Normobaric hyperoxia attenuates early blood–brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108:811–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Chen W, Hartman R, Ayer R, Marcantonio S, Kamper J, Tang J, Zhang JH (2009) Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain. J Neurochem 111:726–736

    Article  CAS  PubMed  Google Scholar 

  63. Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D 3rd, Li X, Guthikonda M, Rossi NF, Ding Y (2011) The role of hypoxia-inducible factor-1alpha, aquaporin-4 and matrix metalloproteinase-9 in blood–brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 114:92–101

    Article  CAS  PubMed  Google Scholar 

  64. Siu M, Lee W, Cheng C (2003) The interplay of collagen IV, tumor necrosis factor-alpha, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates Sertoli cell-tight junction dynamics in the rat testis. Endocrinology 144:371–387

    Article  CAS  PubMed  Google Scholar 

  65. Gorodeski G (2007) Estrogen decrease in tight junction resistance involves matrix metalloproteinase-7-mediated remodeling of occludin. Endocrinology 148:218–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jeong S, Ledee D et al (2012) Interaction of clusterin and matrix metalloproteinase-9 and its implication for epithelial homeostasis and inflammation. Am J Pathol 180:2028–2039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Noor Al-Dasooqi is a Clinical Centre of Research Excellence Post-Doctoral Research Fellow; Ms Hannah Wardill is the recipient of an Australian Post-Graduate Scholarship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Al-Dasooqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Dasooqi, N., Wardill, H.R. & Gibson, R.J. Gastrointestinal Mucositis: The Role of MMP-Tight Junction Interactions in Tissue Injury. Pathol. Oncol. Res. 20, 485–491 (2014). https://doi.org/10.1007/s12253-013-9733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9733-y

Keywords

Navigation