Skip to main content
Log in

Mathematical Modeling of Therapeutic Strategies for Myeloid Malignancies

  • Research
  • Published:
Pathology & Oncology Research

Abstract

The existence of malignant stem cells has been proven for hematopoietic disorder as well as some solid tumors. Although significant improvements in cancer therapy have been made, tumor recurrence is frequent and can partly be due to the absence of therapeutic target which tumor stem cells are regarded as. In this paper we shall explore different therapeutic scenarios for successful tumor treatment by using a predictive mathematical model based on the cell compartment method. In particular, we shall study the effects of the chemotherapeutic target rate and of the interval of G-CSF administration on therapy for myeloid malignancies through simulating chemotherapy with G-CSF (granulocyte colony-stimulating factor) support. The results indicate that if target rate is raised to an enough high value, the efficiency of chemotherapy increases so greatly that the tumor mature cells perish completely and normal mature cells are maintained at a normal level. Furthermore, the administration of G-CSF can increase the amount of the normal mature cells to a normal level. However, too long interval of G-CSF administration is demonstrated not propitious to patients’ healing. These results indicate that the simulations may be an effective approach to help designing therapeutic scenarios for successful tumor treatment by chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  2. Abkowitz JL, Persik MT, Shelton GH, Ott RL, Kiklevich JV, Catlin SN, Guttorp P (1995) Behavior of hematopoietic stem cells in a large animal. Proc Natl Acad Sci U S A 92:2031–2035

    Article  PubMed  CAS  Google Scholar 

  3. Nowak MA, Michor F, Iwasa Y (2003) The linear process of somatic evolution. Proc Natl Acad Sci U S A 100:14966–14969

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  5. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743

    Article  PubMed  CAS  Google Scholar 

  6. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967

    Article  PubMed  CAS  Google Scholar 

  7. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  8. Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8:1–12

    Article  PubMed  CAS  Google Scholar 

  9. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA (2005) Dynamics of chronic myeloid leukaemia. Nature 435:1267–1270

    Article  PubMed  CAS  Google Scholar 

  10. Komarova NL, Wodarz D (2005) Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci U S A 102:9714–9719

    Article  PubMed  CAS  Google Scholar 

  11. Bernard S, Belair J, Mackey MC (2004) Bifurcations in a white-blood-cell production model. C R Biol 327:201–210

    Article  PubMed  Google Scholar 

  12. Pujo-Menjouet L, Mackey MC (2004) Contribution to the study of periodic chronic myelogenous leukemia. C R Biol 327:235–244

    Article  PubMed  Google Scholar 

  13. Colijn C, Mackey MC (2005) A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia. J Theor Biol 237:117–132

    Article  PubMed  Google Scholar 

  14. Catlin SN, Guttorp P, Abkowitz JL (2005) The kinetics of clonal dominance in myeloproliferative disorders. Blood 106:2688–2692

    Article  PubMed  CAS  Google Scholar 

  15. Engel C, Scholz M, Loeffler M (2004) A computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy. Blood 104:2323–2331

    Article  PubMed  CAS  Google Scholar 

  16. Ostby I, Kvalheim G, Rusten LS, Grottum P (2004) Mathematical modeling of granulocyte reconstitution after high-dose chemotherapy with stem cell support: effect of post-transplant G-CSF treatment. J Theor Biol 231:69–83

    Article  PubMed  CAS  Google Scholar 

  17. Wichmann HE, Loeffler M (1985) Mathematical modeling of cell proliferation: stem cell regulation in hemopoiesis. CRC Press, Boca Raton, Fla

    Google Scholar 

  18. Ganguly R, Puri IK (2006) Mathematical model for the cancer stem cell hypothesis. Cell Prolif 39:3–14

    Article  PubMed  CAS  Google Scholar 

  19. Scholz M, Engel C, Loeffler M (2005) Modelling human granulopoiesis under poly-chemotherapy with G-CSF support. J Math Biol 50:397–439

    Article  PubMed  CAS  Google Scholar 

  20. Dontu G, Al-Hajj M, Abdallah WA, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Proliferation 36:59–72

    Article  PubMed  CAS  Google Scholar 

  21. Brown MD, Gilmore PE, Hart CA, Samuel JD, Ramani VA, George NJ, Clarke NW (2007) Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate 67:1384–1396

    Article  PubMed  Google Scholar 

  22. Alison MR (2005) Liver stem cells: implications for hepatocarcinogenesis. Stem Cell Rev 1:253–260

    Article  PubMed  CAS  Google Scholar 

  23. Warner JK, Wang JC, Hope KJ, Jin L, Dick JE (2004) Concepts of human leukemic development. Oncogene 23:7164–7177

    Article  PubMed  CAS  Google Scholar 

  24. Clarke MF (2004) Neurobiology: At the root of brain cancer. Nature 432:281–282

    Article  PubMed  CAS  Google Scholar 

  25. Huang S, Terstappen LW (1994) Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature 368:664

    PubMed  CAS  Google Scholar 

  26. Armitage P, Doll R (1957) A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer 11:161–169

    Article  PubMed  CAS  Google Scholar 

  27. Michor F, Iwasa Y, Nowak MA (2004) Dynamics of cancer progression. Nat Rev Cancer 4:197–205

    Article  PubMed  CAS  Google Scholar 

  28. Dick JE (2003) Breast cancer stem cells revealed. Proc Natl Acad Sci U S A 100:3547–3549

    Article  PubMed  CAS  Google Scholar 

  29. Huang S, Terstappen LW (1992) Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature 360:745–749

    Article  PubMed  CAS  Google Scholar 

  30. Huang S, Law P, Francis K, Palsson BO, Ho AD (1999) Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules. Blood 94:2595–2604

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No.30970558 and No.11074084.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiang Huang or Yi Xiao.

Appendix

Appendix

Table 1 Description of parameters used in the model
Table 2 Mathematical representations of the regulatory signals [17, 18]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Li, H., Du, W. et al. Mathematical Modeling of Therapeutic Strategies for Myeloid Malignancies. Pathol. Oncol. Res. 18, 939–947 (2012). https://doi.org/10.1007/s12253-012-9524-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-012-9524-x

Keywords

Navigation