Skip to main content

Advertisement

Log in

Oxidant/Antioxidant Status, Lipids and Hormonal Profile in Overweight Women with Breast Cancer

  • Published:
Pathology & Oncology Research

Abstract

This study was carried out to determine the relationships between leptin concentrations, lipid alterations, oxidant/ antioxidant status, in vitro LDL oxidizability and LDL-fatty acid composition in overweight breast cancer patients. Glucose, insulin, leptin, lipids, LDL-cholesteryl ester fatty acids, markers of oxidant status (MDA, Hydroperoxides, carbonyl proteins, conjugated dienes) and markers of antioxidant status (vitamins A, C, E, erythrocyte activities of the enzymes superoxide dismutase, SOD, catalase, glutathione peroxidase,GPx, and glutathione reductase, GR and the serum total antioxidant status, ORAC) were investigated in breast cancer patients and in control women. Our findings showed that insulin, leptin, triglyceride, cholesterol and LDL-C concentrations were increased in patients compared to controls. ORAC and vitamin C and E values were lower while plasma hydroperoxide, carbonyl protein and conjugated diene levels, SOD and GPx activities were higher than in controls. Alterations in LDL-fatty acid composition were associated with their enhanced oxidative susceptibility. There were significant positive correlations between leptin concentrations and LDL-C, hydroperoxides, carbonyl proteins, SOD activity, baseline conjugated diene levels and oxidation rate, and significant negative correlations between leptin and ORAC, lag time and LDL-PUFA in patients. In conclusion, breast cancer is associated with lipid alterations and enhanced oxidative stress linked to high leptin levels in overweight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization, International Agency for Research on Cancer (2002) IARC handbooks of cancer prevention: breast cancer screening. IRAC, Layon, pp 1–7

    Google Scholar 

  2. Kaaks R (1996) Nutrition, hormones, and breast cancer: is insulin the missing link? Cancer Causes Control 7:605–625

    Article  CAS  PubMed  Google Scholar 

  3. Nelson NJ (2006) Migrant studies aid the search for factors linked to breast cancer risk. J Natl Cancer Inst 98:436–438

    PubMed  Google Scholar 

  4. Kang DH (2002) Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues 13:540–549

    Article  PubMed  Google Scholar 

  5. Malins DC (1996) Free radicals and breast cancer. Environ Health Perspect 104:1140

    Article  CAS  PubMed  Google Scholar 

  6. Ahn J, Nowell S, McCann SE, Yu J et al (2006) Associations between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemiol Biomarkers Prev 15:1217–1222

    Article  CAS  PubMed  Google Scholar 

  7. Saadatian-Elahi M, Norat T, Goudable J, Riboli E (2004) Biomarkers of dietary fatty acid intake and the risk of breast cancer: a meta-analysis. Int J Cancer 111:584–591

    Article  CAS  PubMed  Google Scholar 

  8. Abu-Bedair FA, El-Gamal BA, Ibrahim NA, El-Aaser AA (2003) Serum lipids and tissue DNA content in Egyptian female breast cancer patients. Jpn J Clin Oncol 33:278–282

    Article  PubMed  Google Scholar 

  9. Am F, Branchi A, Sommaviva D (2000) Serum lipoprotein profile in patients with cancer. A comparison with non-cancer subjects. Int J Clin Lab Res 30:141–145

    Article  Google Scholar 

  10. Merzouk S, Hichami A, Sari A et al (2004) Impaired oxidant/antioxidant status and LDL-fatty acid composition are associated with increased susceptibility to peroxidation of LDL in diabetic patients. J Gen Physiol Biophys 23:387–399

    CAS  Google Scholar 

  11. Peacock SL, White E, Daling JR, Voigt LF, Malone KE (1999) Relation between obesity and breast cancer in young women. Am J Epidemiol 149:339–346

    CAS  PubMed  Google Scholar 

  12. Urakawa H, Katsuki A, Sumida Y et al (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88:4673–4676

    Article  CAS  PubMed  Google Scholar 

  13. Schindler TH, Cardenas J, Prior JO et al (2006) Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol 47:1188–1195

    Article  CAS  PubMed  Google Scholar 

  14. Maeso Fortuny MC, Brito Díaz B, Cabrera de León A (2006) Leptin, estrogens and cancer. Mini Rev Med Chem 6:897–907

    Article  CAS  PubMed  Google Scholar 

  15. Sulkowska M, Golaszewska J, Wincewicz A, Koda M, Baltaziak M, Sulkowski S (2006) Leptin—from regulation of fat metabolism to stimulation of breast cancer growth. Pathol Oncol Res 12:69–72

    Article  CAS  PubMed  Google Scholar 

  16. Roe JH, Kuether CA (1943) The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine derivatives of dehydroascorbic acid. J Biol Chem 147:399–407

    CAS  Google Scholar 

  17. Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd edn. Verlag Chemie GmbH, Weinheim

    Google Scholar 

  18. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterizations of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  19. Goldberg DM, Spooner RJ (1992) Glutathione reductase. In: Bergmeyer HB (ed) Methods of enzymatic analysis, vol 3, 3rd edn. Verlag Chemie GmbH, Weinheim, pp 258–265

  20. Elstner EF, Youngman RJ, Obwad W (1983) Superoxide dismutase. In: Bergmeyer HB (ed) Methods of enzymatic analysis, 3rd edn. Verlag Chemie GmbH, Weinheim, vol 3, pp 293–302

  21. Nourooz-Zadeh J, Tajaddini-Sarmadi J, Ling KLE, Wolff PS (1996) Low-density lipoprotein is the major carrier of lipid hydroperoxides in plasma. Relevance to determination of total plasma lipid hydroperoxide concentrations. Biochem J 313:781–786

    CAS  PubMed  Google Scholar 

  22. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RI (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. Esterbauer H, Striegl G, Puhl H, Rotheneder M (1989) Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Rad Res Commun 6:67–75

    Article  CAS  Google Scholar 

  25. Rose DP, Haffner SM, Baillargeon J (2007) Adiposity, the metabolic syndrome, and breast cancer in African–American and White American women. Endocr Rev 28:763–777

    Article  CAS  PubMed  Google Scholar 

  26. Tessitore L, Vizio B, Pesola D et al (2004) Adipocyte expression and circulating levels of leptin increase in both gynaecological and breast cancer patients. Int J Oncol 24:1529–1535

    CAS  PubMed  Google Scholar 

  27. Furberg AS, Veierod MB, Wilsgaard T, Bernstein L, Thune I (2004) Serum high-density lipoprotein cholesterol, metabolic profile, and breast cancer risk. J Natl Cancer Inst 96:1152–1160

    Article  CAS  PubMed  Google Scholar 

  28. Dhaval SF (2008) Significance of alterations in plasma lipid profile levels in breast cancer. Integr Cancer Ther 7:33–41

    Article  Google Scholar 

  29. Hasija K, Bagga HK (2005) Alterations of serum cholesterol and serum lipoprotein in breast cancer of women. Indian J Clin Biochem 20:61–66

    Article  CAS  Google Scholar 

  30. Gooden PJ, Boyd NF, Hanna W, Hartwick W, Murray D, Qizilbash A (1997) Elevated levels of plasma triglycerides are associated with histologically defined premenopausal breast cancer risk. Nutr Cancer 27:284–292

    Article  Google Scholar 

  31. Ambrosone CB (2000) Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2:903–917

    Article  CAS  PubMed  Google Scholar 

  32. Rossner P, Terry MB, Gammon MD et al (2007) Plasma protein carbonyl levels and breast cancer risk. J Cell Mol Med 11:1138–1148

    Article  CAS  PubMed  Google Scholar 

  33. Bougnoux P, Giraudeau B, Couet C (2006) Diet, cancer, and the lipidome. Cancer Epidemiol Biomarkers Prev 15:416–421

    Article  CAS  PubMed  Google Scholar 

  34. Surapaneni KM, Gopan CS (2007) Status of lipid peroxidation and antioxidant enzymes in patients with carcinoma of breast. JMSR 15:21–24

    Google Scholar 

  35. Delimaris I, Faviou E, Antonakos G, Stathopoulou E, Zachari A, Dionyssiou-Asteriou A (2007) Oxidized LDL, serum oxidizability and serum lipid levels in patients with breast or ovarian cancer. Clin Biochem 40:1129–1134

    Article  CAS  PubMed  Google Scholar 

  36. Shannon J, King IB, Moshofsky R et al (2007) Erythrocyte fatty acids and breast cancer risk: a case-control study in Shanghai, China. Am J Clin Nutr 85:1090–1097

    CAS  PubMed  Google Scholar 

  37. Lu S, Archer MC (2005) Fatty acid synthase is a potential molecular target for the chemoprevention of breast cancer. Carcinogenesis 26:153–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the French Foreign office (International Research Extension Grants) and by a financial support from the Algerian Research investigation.

Competing interests

The author(s) declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Merzouk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badid, N., Baba Ahmed, F.Z., Merzouk, H. et al. Oxidant/Antioxidant Status, Lipids and Hormonal Profile in Overweight Women with Breast Cancer. Pathol. Oncol. Res. 16, 159–167 (2010). https://doi.org/10.1007/s12253-009-9199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-009-9199-0

Keywords

Navigation