Skip to main content
Log in

Supercritical Fluid Technology-Based Trans-Resveratrol SLN for Long Circulation and Improved Radioprotection

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

To alleviate the harmful effects of radiations during occupational radiology, radiotherapy and diagnosis, radioprotective system with lower toxicity and extended activity is imperative. Trans-resveratrol (RVL) acts through free radical scavenging/antioxidant mechanism to mitigate the radiation-induced damage. But, its poor solubility and fast metabolism impede its efficacy. Thus, encapsulation of RVL into long circulating solid lipid nanoparticle (SLN) is aimed.

Method

Supercritical CO2 solution of RVL, Gelucire®50/02 and Gelucire®50/13 SLN, was rapidly expanded into aqueous phase containing Tween 80, sonicated and lyophilized to get SLN. Particle size, polydispersity index (PDI), entrapment efficiency (%EE), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), drug release, in vivo pharmacokinetics, antioxidant assays, radiation-induced lipid peroxidation and plasmid DNA relaxation assays were studied. Stability studies were performed to analyze drug degradation and shelf life.

Results

Optimized formulation (F9) had %yield, particle size, PDI, %EE and %drug release (after 72 h) of 68.48 ± 5.73 %, 276.7 ± 5.33 nm, 0.18 ± 0.032, 62.66 ± 4.52 % and 70.05 ± 3.003 %, respectively. Electron microscopy revealed nearly spherical particles, while DSC and XRD showed reduced crystalline peaks. F9 showed higher AUC and sustained release of RVL in rats (i.v. bolus) and increased antioxidant activities and radioprotection as compared to RVL solution. Shelf life of >2 years was predicted for F9 (at 8 °C).

Conclusion

Results are encouraging to use F9 for radiation exposure prophylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

%EE:

Entrapment efficiency

%IDD:

Percentage inhibition of 2-deoxy-d-ribose degradation

%IDPPH:

Percentage DPPH scavenging activity

%ILPO:

Percent inhibition of lipid peroxidation

%SOR:

Superoxide radical scavenging activity

AA:

Antioxidant activity

CO2 :

Carbon dioxide

DNA:

Deoxyribonucleic acid

DPPH:

1,1-Diphenyl-2-Picryl-Hydrazyl Free Radical

DSC:

Differential scanning calorimetry

IDV:

Integrated density values

ICH:

International Council for Harmonisation

NBT:

Nitro blue tetrazolium

OI:

Oxidation index

PDI:

Polydispersity Index

PEG:

Polyethylene glycol

PMS-NADH:

Phenazine methoxy sulphate nicotinamide adenine dinucleotide

RESS:

Rapid expansion of supercritical fluid

RVL:

Trans-resveratrol

SCF:

Supercritical fluid

SEM:

Scanning electron microscopy

SLNs:

Solid lipid nanoparticles

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

References

  1. Nair CK, Parida DK, Nomura T. Radioprotectors in radiotherapy. J Radiat Res. 2001;42(1):21–37.

    Article  CAS  PubMed  Google Scholar 

  2. Hosseinimehr S, Zakaryaee V, Ahmadi A, Akhlaghpoor S. Radioprotective effects of chlorogenic acid against mortality induced by g-irradiation in mice. Methods Find Exp Clin Pharmacol. 2008;30(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  3. Hosseinimehr SJ. Trends in the development of radioprotective agents. Drug Discov Today. 2007;12(19):794–805.

    Article  CAS  PubMed  Google Scholar 

  4. Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, et al. Radioprotection by plant products: present status and future prospects. Phytother Res. 2005;19(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  5. Brown DQ, Pittock III JW, Rubinstein JS. Early results of the screening program for radioprotectors. Int J Radiat Oncol, Biol, Phys. 1982;8(3):565–70.

    Article  CAS  Google Scholar 

  6. Martin RF, Broadhurst S, Reum ME, Squire CJ, Clark GR, Lobachevsky PN, et al. In vitro studies with methylproamine A potent new radioprotector. Cancer Res. 2004;64(3):1067–70.

    Article  CAS  PubMed  Google Scholar 

  7. Hahn SM, Krishna MC, DeLuca AM, Coffin D, Mitchell JB. Evaluation of the hydroxylamine Tempol-H as an in vivo radioprotector. Free Radic Biol Med. 2000;28(6):953–8.

    Article  CAS  PubMed  Google Scholar 

  8. Epperly M, Defilippi S, Sikora C, Gretton J, Kalend A, Greenberger J. Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther. 2000;7(12):1011–8.

    Article  CAS  PubMed  Google Scholar 

  9. Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, Feng Q-f, Kang SK, Spasojevic I, et al. A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med. 2002;33(6):857–63.

    Article  CAS  PubMed  Google Scholar 

  10. Lachumy SJ, Oon CE, Deivanai S, Saravanan D, Vijayarathna S, Choong YS, et al. Herbal remedies for combating irradiation: a green anti-irradiation approach. Asian Pacific Journal of Cancer Prevention: APJCP. 2013;14(10):5553.

    Article  PubMed  Google Scholar 

  11. Bhandari PR. Plant products for radioprotection: boon or bane? J Cancer Res Ther. 2013;9(3):545.

    Article  PubMed  Google Scholar 

  12. Kuntić VS, Stanković MB, Vujić ZB, Brborić JS, Uskoković‐Marković SM. Radioprotectors—the evergreen topic. Chem Biol. 2013;10(10):1791–803.

    Google Scholar 

  13. Shukla Y, Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci. 2011;1215(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Gescher A, Steward WP, Brown K. Resveratrol in the management of human cancer: how strong is the clinical evidence? Ann N Y Acad Sci. 2013;1290(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  15. Carsten RE, Bachand AM, Bailey SM, Ullrich RL. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells. Radiat Res. 2008;169(6):633–8. doi:10.1667/rr1190.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aziz MH, Afaq F, Ahmad N. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin. Photochem Photobiol. 2005;81(1):25–31. doi:10.1562/2004-08-13-ra-274.

    Article  CAS  PubMed  Google Scholar 

  17. Gülçin İ. Antioxidant properties of resveratrol: a structure–activity insight. Innovative Food Sci Emerg Technol. 2010;11(1):210–8.

    Article  Google Scholar 

  18. Walle T. Bioavailability of resveratrol. Ann N Y Acad Sci. 2011;1215:9–15. doi:10.1111/j.1749-6632.2010.05842.x.

    Article  CAS  PubMed  Google Scholar 

  19. Singh A, Ahmad I, Akhter S, Jain GK, Iqbal Z, Talegaonkar S, et al. Nanocarrier based formulation of Thymoquinone improves oral delivery: stability assessment, in vitro and in vivo studies. Colloids Surf B: Biointerfaces. 2013;102:822–32.

    Article  CAS  PubMed  Google Scholar 

  20. Singh A, Ahmad I, Akhter S, Zaki Ahmad M, Iqbal ZJ, Ahmad F. Thymoquinone: major molecular targets, prominent pharmacological actions and drug delivery concerns. Curr Bioact Compd. 2012;8(4):334–44.

    Article  CAS  Google Scholar 

  21. Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K, et al. Solid lipid based nanocarriers: an overview. Acta Pharm. 2012;62(4):433–72. doi:10.2478/v10007-012-0040-z.

    Article  CAS  PubMed  Google Scholar 

  22. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–34. doi:10.1208/s12249-014-0177-9.

  23. Battaglia L, Gallarate M, Panciani PP, Ugazio E, Sapino S, Peira E et al. Techniques for the preparation of solid lipid nano and microparticles. In: Sezer AD (ed). Application of Nanotechnology in Drug Delivery. InTech; 2014. doi:10.5772/58405.

  24. Sun Y. Supercritical fluid particle design for poorly water-soluble drugs (review). Curr Pharm Des. 2014;20(3):349–68.

    Article  CAS  PubMed  Google Scholar 

  25. Martin A, Cocero MJ. Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv Drug Deliv Rev. 2008;60(3):339–50. doi:10.1016/j.addr.2007.06.019.

    Article  CAS  PubMed  Google Scholar 

  26. Ahmad I, Akhter S, Ahmad MZ, Shamim M, Rizwi MA, Ahmad FJ. Collagen loaded nano-sized surfactant based dispersion for topical application: formulation development, characterization and safety study. Pharmaceut Dev Tech. 2013;19(4):460–7. doi:10.3109/10837450.2013.795167.

  27. Sánchez-Moreno CA, Larrauri J, Saura-Calixto F. Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res Int. 1999;32(6):407–12. http://dx.doi.org/10.1016/S0963-9969(99)00097-6.

    Article  Google Scholar 

  28. Liu F, Ooi VEC, Chang ST. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 1997;60(10):763–71. http://dx.doi.org/10.1016/S0024-3205(97)00004-0.

    Article  CAS  PubMed  Google Scholar 

  29. Halliwell B, Gutteridge JM, Aruoma OI. The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem. 1987;165(1):215–9.

    Article  CAS  PubMed  Google Scholar 

  30. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–1200. doi:10.1038/1811199a0.

  31. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  32. Guideline IHT. Stability testing of new drug substances and products. Q1A (R2), Current Step 2003;4. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073369.pdf. Accessed 06 March 2013.

  33. Guideline IHT. Validation of analytical procedures: text and methodology Q2 (R1)(2005). Website: www.ich.org/cache/compo/363-272-1 html. 2010.

  34. Urban-Morlan Z, Ganem-Rondero A, Melgoza-Contreras LM, Escobar-Chavez JJ, Nava-Arzaluz MG, Quintanar-Guerrero D. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomedicine. 2010;5:611–20. doi:10.2147/IJN.S12125.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Date AA, Vador N, Jagtap A, Nagarsenker MS. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery. Indian patent application number 2167/MUM/2008. Nanotechnology. 2011;22(27):275102.

    Article  PubMed  Google Scholar 

  36. Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B: Biointerfaces. 2016;139:52–61.

    Article  CAS  PubMed  Google Scholar 

  37. Thies C, Ribeiro Dos Santos I, Richard J, VandeVelde V, Rolland H, Benoit JP. A supercritical fluid-based coating technology 1: process considerations. J Microencapsul. 2003;20(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  38. Ribeiro Dos Santos I, Thies C, Richard J, Le Meurlay D, Gajan V, VandeVelde V, et al. A supercritical fluid-based coating technology. 2: solubility considerations. J Microencapsul. 2003;20(1):97–109.

    Article  CAS  PubMed  Google Scholar 

  39. Singh A, Ahmad I, Ahmad S, Iqbal Z, Ahmad FJ. A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Dev Ind Pharm 2016;1–13. doi:10.3109/03639045.2016.1151032

  40. Park JW, Yun JM, Lee ES, Youn YS, Kim KS, Oh YT, et al. A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid. Arch Pharm Res. 2013;36(11):1369–76. doi:10.1007/s12272-013-0187-2.

    Article  CAS  PubMed  Google Scholar 

  41. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  42. Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev. 2007;59(6):444–53.

    Article  CAS  PubMed  Google Scholar 

  43. Chauhan H, Mohapatra S, Munt DJ, Chandratre S, Dash A. Physical-chemical characterization and formulation considerations for solid lipid nanoparticles. AAPS PharmSciTech. 2016;17(3):640–51. doi:10.1208/s12249-015-0394-x.

    Article  CAS  PubMed  Google Scholar 

  44. Kathe N, Henriksen B, Chauhan H. Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations. Drug Dev Ind Pharm. 2014;40(12):1565–75. doi:10.3109/03639045.2014.909840.

    Article  CAS  PubMed  Google Scholar 

  45. Kumbhar DD, Pokharkar VB. Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: physicochemical investigations. Colloids Surf A Physicochem Eng Asp. 2013;416:32–42.

    Article  Google Scholar 

  46. Dodiya S, Chavhan S, Korde A, Sawant KK. Solid lipid nanoparticles and nanosuspension of adefovir dipivoxil for bioavailability improvement: formulation, characterization, pharmacokinetic and biodistribution studies. Drug Dev Ind Pharm. 2013;39(5):733–43.

    Article  CAS  PubMed  Google Scholar 

  47. Li R, Eun JS, Lee M-K. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch Pharm Res. 2011;34(2):331–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the University Grants Commission, New Delhi, India, for the financial support under the Special Assistance Program (SAP-II, 3-58/2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iqbal Ahmad or Farhan Jalees Ahmad.

Ethics declarations

In vivo pharmacokinetic study was performed after proper authorization from Institutional Animal Ethics Committee, Jamia Hamdard, New Delhi, and strict guidelines of Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA, Ministry of Culture, and Government of India) were followed.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Anwar, M., Akhter, S. et al. Supercritical Fluid Technology-Based Trans-Resveratrol SLN for Long Circulation and Improved Radioprotection. J Pharm Innov 11, 308–322 (2016). https://doi.org/10.1007/s12247-016-9254-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-016-9254-9

Keywords

Navigation