Skip to main content
Log in

Preparation and Anti-tumor Study of Dextran 70,000-Selenium Nanoparticles and Poloxamer 188-Selenium Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The anti-tumor effect of selenium nanoparticles (SeNPs) has received more and more attention. However, the clinical application of SeNPs is not optimistic due to the poor stability. To improve the stability of SeNPs, many polymers are used to modify the SeNPs. However, most of the polymers are not approved by FDA. It is significant to develop a SeNPs product with good stability for clinic application. Dextran 70,000 (T70) and poloxamer 188 (P188) are FDA-approved pharmaceutical injection excipients. In this study, we decorate SeNPs with T70 and P188 and assess the physicochemical characterization, storage stability, and anti-tumor activities of T70-SeNPs and P188-SeNPs. Transmission electron microscopy (TEM) shows that T70-SeNPs and P188-SeNPs are spherical particles with particle sizes of 110 nm and 60 nm respectively. Fourier-Transform Infrared Spectra (FT-IR) show that T70 or P188 can interact with SeNPs through hydrogen bonding. Stability study shows that P188-SeNPs freeze-dried powder and T70-SeNPs freeze-dried powder remain stable at 4℃ for 6 months. T70-SeNPs and P188-SeNPs can aggregate in cell matrix and play an anti-tumor role to HepG2 by promoting apoptosis, increasing reactive oxygen species (ROS) content and reducing mitochondrial membrane potential (MMP). This study can provide reference for industrial production of SeNPs products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2018;29(34):4741–51.

    Article  Google Scholar 

  2. Yu QD, Xiao XY, Wen LL, Jian W, Cheng ZH. A cancer-targeted drug delivery system developed with gold nanoparticle mediated DNA-doxorubicin conjugates. RSC Adv. 2014;4(66):34830–5.

    Article  Google Scholar 

  3. Liu Q, Du J. Asymmetrical polymer vesicles for significantly improving MRI sensitivity and cancer-targeted drug delivery. Nanomed Nanotechnol Biol Med. 2016;12(2):483.

    Article  Google Scholar 

  4. Wang S, Su R, Nie S, Sun M, Zhang J, Wu D, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25(4):363–76.

    Article  CAS  Google Scholar 

  5. Davidovits P. Nanotechnology in biology and medicine. Physics in Biology and Medicine (Fifth Edition). 2019:293–305.

  6. Lou J, Zhang L, Zheng G. Advancing cancer immunotherapies with nanotechnology. Advanced Therapeutics. 2019;35:1800128–58.

    Article  Google Scholar 

  7. Yang L, Zhe R, Rb B, Xl A, Jz A, Ry C, et al. Designing selenium polysaccharides-based nanoparticles to improve immune activity of Hericium erinaceus - ScienceDirect. Int J Biol Macromol. 2020;143:393–400.

    Article  Google Scholar 

  8. Xu C, Lu G, Li Q, Zhang J, Gao X. Selenium modulates MMP2 expression through the TGFβ1/Smad signalling pathway in human umbilical vein endothelial cells and rabbits following lipid disturbance. J Trace Elem Med Biol. 2017;42:59–67.

    Article  CAS  Google Scholar 

  9. Kong H, Yang J, Zhang Y, Fang Y, Nishinari K, Phillips G. Synthesis and antioxidant properties of gum Arabic-stabilized selenium nanoparticles. Int J Biol Macromol. 2014;65:155–62.

    Article  CAS  Google Scholar 

  10. Pang KL, Chin KY. Emerging anticancer potentials of selenium on osteosarcoma. Int J Mol Sci. 2019;20(21):5318–37.

    Article  CAS  Google Scholar 

  11. Rayman MP. Selenium and human health. The Lancet. 2012;379(9822):1256–68.

    Article  CAS  Google Scholar 

  12. Zhang J, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 2008;101(1):22–31.

    Article  CAS  Google Scholar 

  13. Mal J, Veneman WJ, Nancharaiah YV, Hullebusch EV, Peijnenburg W, Vijver MG, et al. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology. 2017;11(1):87–97.

    Article  CAS  Google Scholar 

  14. Maiyo F, Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine. 2017;12(9):1075–89.

    Article  CAS  Google Scholar 

  15. Gao X, Li X, Mu J, Ho CT, Xie Y. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. Int J Biol Macromol. 2020;152:605–15.

    Article  CAS  Google Scholar 

  16. Sun D, Liu Y, Yu Q, Qin X, Jie L. Inhibition of tumor growth and vasculature and fluorescence imaging using functionalized ruthenium-thiol protected selenium nanoparticles. Biomaterials. 2014;35(5):1572–83.

    Article  CAS  Google Scholar 

  17. Fang Y, Tang Q, Zhong X, Bai Y, Zheng W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomed. 2012;7:835–44.

    Article  Google Scholar 

  18. Weiss J, Takhistov P, Mcclements DJ. Functional materials in food nanotechnology. J Food Sci. 2006;71(9):107–16.

    Article  Google Scholar 

  19. Santiago PS, Carvalho F, Domingues MM, Carvalho J, Santos NC, Tabak M. Isoelectric point determination for Glossoscolex paulistus extracellular hemoglobin: oligomeric stability in acidic pH and relevance to Protein− surfactant interactions. Langmuir. 2010;26(12):9794–801.

    Article  CAS  Google Scholar 

  20. Kumar S, Tomar MS, Acharya A. Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton’s lymphoma cells. Colloids Surf, B. 2015;126:546–52.

    Article  CAS  Google Scholar 

  21. Guo M, Li Y, Lin Z, Zhao M, Xiao M, Wang C, et al. Surface decoration of selenium nanoparticles with curcumin induced HepG2 cell apoptosis through ROS mediated p53 and AKT signaling pathways. RSC Adv. 2017;7(83):52456–64.

    Article  CAS  Google Scholar 

  22. Nie T, Wu H, Wong KH, Chen T. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. Journal of Materials Chemistry B. 2016;4(13):2351–8.

    Article  CAS  Google Scholar 

  23. Bulgarini A, Lampis S, Turner RJ, Vallini G. Biomolecular composition of capping layer and stability of biogenic selenium nanoparticles synthesized by five bacterial species. Microb Biotechnol. 2020;14(1):198–212.

    Article  Google Scholar 

  24. Pamela K, Lidia, et al. Sulforaphane-conjugated selenium nanoparticles: towards a synergistic anticancer effect. Nanotechnology. 2019;30(6):65101–33.

  25. Davidovich P, Kearney CJ, Martin SJ. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol Chem. 2014;395(10):1163–71.

    Article  CAS  Google Scholar 

  26. Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2010;50(3):389–400.

    Article  Google Scholar 

  27. Juncadella IJ, Kadl A, Sharma AK, Shim YM, Hochreiter-Hufford A, Borish L, et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature. 2013;493(7433):547–51.

    Article  CAS  Google Scholar 

  28. Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc Natl Acad Sci USA. 2007;104(35):14080–5.

    Article  CAS  Google Scholar 

  29. Chaudiere J, Courtin O, Leclaire J. Glutathione oxidase activity of selenocystamine: a mechanistic study. Arch Biochem Biophys. 1992;296(1):328–36.

    Article  CAS  Google Scholar 

  30. Epp O, Ladenstein R, Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Febs Journal. 2010;133(1):51–69.

  31. Luan X, Yan Y, Zheng Q, Wang M, Fang J. Excessive reactive oxygen species induce apoptosis via the APPL1-Nrf2/HO-1 antioxidant signalling pathway in trophoblasts with missed abortion. Life Sci. 2020;254:117781–93.

    Article  CAS  Google Scholar 

  32. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335–43.

    Article  CAS  Google Scholar 

  33. Wang Z, Guo W, Xiao K, Hou S, Liu H. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian J Pharm Sci. 2017;12(6):498–508.

    Article  Google Scholar 

  34. LiãΫE D, Wilkens V, You C, Busch P, Piehler P. Selective targeting of fluorescent nanoparticles to proteins inside live cells. Angewandte Chemie. 2011;50(40):9352–5.

  35. Jia X, Liu Q, Zou S, Xu X, Zhang L. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohyd Polym. 2015;117:434–42.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81803458).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Ai or Cheng Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ji, L., Ren, Y. et al. Preparation and Anti-tumor Study of Dextran 70,000-Selenium Nanoparticles and Poloxamer 188-Selenium Nanoparticles. AAPS PharmSciTech 23, 29 (2022). https://doi.org/10.1208/s12249-021-02141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02141-4

KEY WORDS

Navigation