Skip to main content

Advertisement

Log in

Elemental Concentrations of Water and Otoliths as Salinity Proxies in a Northern Gulf of Mexico Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

To use elements as salinity proxies, relationships of elemental concentrations with salinity must be known and vary from freshwater to marine endmembers. To extend these proxies to biogenic carbonates, elements must incorporate into carbonate matrices proportional to environmental concentrations. Therefore, this study quantified calcium (Ca), magnesium (Mg), strontium (Sr), barium (Ba), and manganese (Mn) in Mobile Bay, Alabama from freshwater to marine endmembers. Two smaller drainages (Fowl River and Dog River) were quantified to determine if all freshwater elemental concentrations were consistent. The ratio of elements (Mg, Sr, Ba, Mn) to Ca were also measured in water and Red Drum otolith edges across the salinity gradient. Water Ca, Sr, and Mg had positive relationships with salinity, but Ca and Sr were lower in Fowl River freshwater. Barium exhibited a mid-salinity peak and decreased with further salinity increases. More Ba and Mn were present during low river discharge; however, Mn did not vary with salinity. In both water and otoliths, Sr:Ca increased and Ba:Ca decreased non-linearly with salinity increases, Mn:Ca exhibited no relationship with salinity, and Mg:Ca increased non-linearly in water. These results demonstrate that Sr:Ca and Ba:Ca may be used as salinity proxies within the Mobile Bay estuary and likely other estuaries in the region. However, given non-linearity of element:Ca salinity relationships, variable concentrations among species and estuaries from other studies, and variation in elemental ratios between drainages and flow regimes, species-specific element salinity relationships should be known in the estuary of interest prior to utilizing elemental salinity proxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Able, K.W. 2005. A re-examination of fish estuarine dependence: evidence for connectivity between estuarine and ocean habitats. Estuarine, Coastal and Shelf Science 64 (1): 5–17.

    Article  Google Scholar 

  • Albuquerque, C.Q., N. Miekeley, and J.H. Muelbert. 2010. Whitemouth croaker, Micropogonias furnieri, trapped in a freshwater coastal lagoon: a natural comparison of freshwater and marine influences on otolith chemistry. Neotropical Ichthyology 8 (2): 311–320.

    Article  Google Scholar 

  • Albuquerque, C.Q., N. Miekeley, J.H. Muelbert, B.D. Walther, and A.J. Jaureguizar. 2012. Estuarine dependency in a marine fish evaluated with otolith chemistry. Marine Biology 159 (10): 2229–2239.

    Article  CAS  Google Scholar 

  • Altenritter, M.E., A. Cohuo, and B.D. Walther. 2018. Proportions of demersal fish exposed to sublethal hypoxia revealed by otolith chemistry. Marine Ecology Progress Series 589: 193–208.

    Article  CAS  Google Scholar 

  • Andersson, P.S., G.J. Wasserburg, and J. Ingri. 1992. The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science Letters 113 (4): 459–472.

    Article  CAS  Google Scholar 

  • Arai, T., and N. Chino. 2017. Influence of water salinity on the strontium:calcium ratios in otoliths of the giant mottled eel, Anguilla marmorata. Environmental Biology of Fishes 100 (3): 281–286.

    Article  Google Scholar 

  • Bahar, M.M., and M. Yamamuro. 2008. Assessing the influence of watershed land use patterns on the major ion chemistry of river waters in the Shimousa upland, Japan. Chemistry and Ecology 24 (5): 341–355.

    Article  CAS  Google Scholar 

  • Bath, G.E., S.R. Thorrold, C.M. Jones, S.E. Campana, J.W. McLaren, and J.W.H. Lam. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 64 (10): 1705–1714.

    Article  CAS  Google Scholar 

  • Beck, M.W., K.L. Heck Jr., K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, and T.J. Minello. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. BioScience 51 (8): 633–641.

    Article  Google Scholar 

  • Bianchi, T.S., J.R. Pennock, and R.R. Twilley. 1999. Biogeochemistry of Gulf of Mexico estuaries. New York: John Wiley & Sons.

    Google Scholar 

  • Brown, R.J., and K.P. Severin. 2009. Otolith chemistry analyses indicate that water Sr: Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences 66 (10): 1790–1808.

    Article  CAS  Google Scholar 

  • Campana, S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263–297.

    Article  CAS  Google Scholar 

  • Capo, R.C., B.W. Stewart, and O.A. Chadwick. 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82 (1–3): 197–225.

    Article  CAS  Google Scholar 

  • Carpenter, J.H., and M.E. Manella. 1973. Magnesium to chlorinity ratios in seawater. Journal of Geophysical Research 78 (18): 3621–3626.

    Article  CAS  Google Scholar 

  • Carroll, J., K.K. Falkner, E.T. Brown, and W.S. Moore. 1993. The role of the Ganges-Brahmaputra mixing zone in supplying barium and 226Ra to the Bay of Bengal. Geochimica et Cosmochimica Acta 57 (13): 2981–2990.

    Article  CAS  Google Scholar 

  • Coffey, M., F. Dehairs, O. Collette, G. Luther, T. Church, and T. Jickells. 1997. The behaviour of dissolved barium in estuaries. Estuarine, Coastal and Shelf Science 45 (1): 113–121.

    Article  CAS  Google Scholar 

  • Colbert, D., and J. McManus. 2005. Importance of seasonal variability and coastal processes on estuarine manganese and barium cycling in a Pacific northwest estuary. Continental Shelf Research 25 (11): 1395–1414.

    Article  Google Scholar 

  • Comyns, B.H., C.F. Rakocinski, M.S. Peterson, and A.M. Shiller. 2008. Otolith chemistry of juvenile spotted seatrout Cynoscion nebulosus reflects local natal regions of coastal Mississippi, USA. Marine Ecology Progress Series 371: 243–252.

    Article  Google Scholar 

  • Craig, C.-A., K.E. Jarvis, and L.J. Clarke. 2000. An assessment of calibration strategies for the quantitative and semi-quantitative analysis of calcium carbonate matrices by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Journal of Analytical Atomic Spectrometry 15 (8): 1001–1008.

    Article  CAS  Google Scholar 

  • Crook, D.A., J.I. Macdonald, J.P. O’Connor, and B. Barry. 2006. Use of otolith chemistry to examine patterns of diadromy in the threatened Australian grayling Prototroctes maraena. Journal of Fish Biology 69 (5): 1330–1344.

    Article  CAS  Google Scholar 

  • Dance, M.A., and J.R. Rooker. 2015. Habitat- and bay-scale connectivity of sympatric fishes in an estuarine nursery. Estuarine, Coastal and Shelf Science 167: 447–457.

    Article  Google Scholar 

  • de Villiers, S. 1999. Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth and Planetary Science Letters 171 (4): 623–634.

    Article  Google Scholar 

  • Dodd, J.R., and E.L. Crisp. 1982. Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies. Palaeogeography, Palaeoclimatology, Palaeoecology 38 (1): 45–56.

    Article  CAS  Google Scholar 

  • Dorval, E., C.M. Jones, R. Hannigan, and J. van Montfrans. 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Canadian Journal of Fisheries and Aquatic Sciences 64 (3): 411–424.

    Article  CAS  Google Scholar 

  • Doubleday, Z.A., H.H. Harris, C. Izzo, and B.M. Gillanders. 2014. Strontium randomly substituting for calcium in fish otolith aragonite. Analytical Chemistry 86 (1): 865–869.

    Article  CAS  Google Scholar 

  • Dzwonkowski, B., K. Park, H.K. Ha, W.M. Graham, F.J. Hernandez, and S.P. Powers. 2011. Hydrographic variability on a coastal shelf directly influenced by estuarine outflow. Continental Shelf Research 31 (9): 939–950.

    Article  Google Scholar 

  • Elsdon, T.S., and B.M. Gillanders. 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences 59 (11): 1796–1808.

    Article  CAS  Google Scholar 

  • Elsdon, T.S., and B.M. Gillanders. 2005a. Consistency of patterns between laboratory experiments and field collected fish in otolith chemistry: an example and applications for salinity reconstructions. Marine and Freshwater Research 56 (5): 609–617.

    Article  CAS  Google Scholar 

  • Elsdon, T.S., and B.M. Gillanders. 2005b. Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Canadian Journal of Fisheries and Aquatic Sciences 62 (5): 1143–1152.

    Article  CAS  Google Scholar 

  • Farmer, T.M., D.R. DeVries, R.A. Wright, and J.E. Gagnon. 2013. Using seasonal variation in otolith microchemical composition to indicate largemouth bass and southern flounder residency patterns across an estuarine salinity gradient. Transactions of the American Fisheries Society 142 (5): 1415–1429.

    Article  CAS  Google Scholar 

  • Fuiman, L.A., and G.R. Hoff. 1995. Natural variation in elemental composition of sagittae from red drum. Journal of Fish Biology 47 (6): 940–955.

    Article  CAS  Google Scholar 

  • Gaillardet, J., J. Viers, and B. Dupré. 2003. 5.09—trace elements in river waters. In Treatise on geochemistry, ed. H.D. Holland and K.K. Turekian, 225–272. Oxford: Pergamon.

    Chapter  Google Scholar 

  • Gillanders, B.M., T.S. Elsdon, I.A. Halliday, G.P. Jenkins, J.B. Robins, and F.J. Valesini. 2011. Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Marine and Freshwater Research 62 (9): 1115–1131.

    Article  Google Scholar 

  • Goldstein, S.J., and S.B. Jacobsen. 1987. The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chemical Geology: Isotope Geoscience 66 (3): 245–272.

    CAS  Google Scholar 

  • Hamer, P.A., and G.P. Jenkins. 2007. Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology 71 (4): 1035–1055.

    Article  CAS  Google Scholar 

  • Hanor, J.S., and L.H. Chan. 1977. Non-conservative behavior of barium during mixing of Mississippi River and Gulf of Mexico waters. Earth and Planetary Science Letters 37 (2): 242–250.

    Article  CAS  Google Scholar 

  • Hicks, A.S., G.P. Closs, and S.E. Swearer. 2010. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: a multi-element approach for tracking diadromous migrations. Journal of Experimental Marine Biology and Ecology 394 (1): 86–97.

    Article  Google Scholar 

  • Hoff, G.R., and L.A. Fuiman. 1993. Morphometry and composition of red drum otoliths: changes associated with temperature, somatic growth rate, and age. Comparative Biochemistry and Physiology Part A: Physiology 106 (2): 209–219.

    Article  Google Scholar 

  • Hoff, G.R., and L.A. Fuiman. 1995. Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bulletin of Marine Science 56 (2): 578–591.

    Google Scholar 

  • Hughes, L.C., G. Ortí, Y. Huang, Y. Sun, C.C. Baldwin, A.W. Thompson, D. Arcila, R. Betancur-R, C. Li, L. Becker, N. Bellora, X. Zhao, X. Li, M. Wang, C. Fang, B. Xie, Z. Zhou, H. Huang, S. Chen, B. Venkatesh, and Q. Shi. 2018. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proceedings of the National Academy of Sciences 115 (24): 6249–6254.

    Article  CAS  Google Scholar 

  • Ingram, B.L., and D.J. DePaolo. 1993. A 4300 year strontium isotope record of estuarine paleosalinity in San Francisco Bay, California. Earth and Planetary Science Letters 119 (1): 103–119.

    Article  CAS  Google Scholar 

  • Izzo, C., Z.A. Doubleday, and B.M. Gillanders. 2016. Where do elements bind within the otoliths of fish? Marine and Freshwater Research 67 (7): 1072–1076.

    Article  CAS  Google Scholar 

  • Izzo, C., P. Reis-Santos, and B.M. Gillanders. 2018. Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation. Fish and Fisheries 19 (3): 441–454.

    Article  Google Scholar 

  • Janzen, D.H. 1974. Tropical Blackwater Rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 6 (2): 69–103.

    Article  Google Scholar 

  • Jarvie, H.P., C. Neal, A.D. Tappin, J.D. Burton, L. Hill, M. Neal, M. Harrow, R. Hopkins, C. Watts, and H. Wickham. 2000. Riverine inputs of major ions and trace elements to the tidal reaches of the river tweed, UK. Science of the Total Environment 251-252: 55–81.

    Article  CAS  Google Scholar 

  • Jochum, K.P., D. Scholz, B. Stoll, U. Weis, S.A. Wilson, Q. Yang, A. Schwalb, N. Börner, D.E. Jacob, and M.O. Andreae. 2012. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chemical Geology 318-319: 31–44.

    Article  CAS  Google Scholar 

  • Johnson, D.S. 1967. Distributional patterns of Malayan freshwater fish. Ecology 48 (5): 722–730.

    Article  Google Scholar 

  • Kalish, J.M. 1991. Determinants of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus. Marine Ecology-Progress Series 74: 137–159.

    Article  CAS  Google Scholar 

  • Kenworthy, M.D., J.H. Grabowski, C.A. Layman, G.D. Sherwood, S.P. Powers, C.H. Peterson, R.K. Gittman, D.A. Keller, and F.J. Fodrie. 2018. Movement ecology of a mobile predatory fish reveals limited habitat linkages within a temperate estuarine seascape. Canadian Journal of Fisheries and Aquatic Sciences 75 (11): 1990–1998.

    Article  CAS  Google Scholar 

  • Kerr, J.L., D.S. Baldwin, and K.L. Whitworth. 2013. Options for managing hypoxic Blackwater events in river systems: a review. Journal of Environmental Management 114: 139–147.

    Article  CAS  Google Scholar 

  • Kim, C.-K., and K. Park. 2012. A modeling study of water and salt exchange for a micro-tidal, stratified northern Gulf of Mexico estuary. Journal of Marine Systems 96: 103–115.

    Article  Google Scholar 

  • Klinkhammer, G.P., and J. McManus. 2001. Dissolved manganese in the Columbia river estuary: production in the water column. Geochimica et Cosmochimica Acta 65 (17): 2835–2841.

    Article  CAS  Google Scholar 

  • Kraus, R.T., and D.H. Secor. 2004. Incorporation of strontium into otoliths of an estuarine fish. Journal of Experimental Marine Biology and Ecology 302 (1): 85–106.

    Article  CAS  Google Scholar 

  • Kraus, R.T., and D.H. Secor. 2005. Application of the nursery-role hypothesis to an estuarine fish. Marine Ecology Progress Series 291: 301–305.

    Article  Google Scholar 

  • Lehrter, J.C. 2006. Effects of land use and land cover, stream discharge, and interannual climate on the magnitude and timing of nitrogen, phosphorus, and organic carbon concentrations in three coastal plain watersheds. Water Environment Research 78 (12): 2356–2368.

    Article  CAS  Google Scholar 

  • Lehrter, J.C. 2008. Regulation of eutrophication susceptibility in oligohaline regions of a northern Gulf of Mexico estuary, Mobile Bay, Alabama. Marine Pollution Bulletin 56 (8): 1446–1460.

    Article  CAS  Google Scholar 

  • Lewis, G.P., J.D. Mitchell, C.B. Andersen, D.C. Haney, M.-K. Liao, and K.A. Sargent. 2007. Urban influences on stream chemistry and biology in the big Brushy Creek watershed, South Carolina. Water, Air, and Soil Pollution 182 (1): 303–323.

    Article  CAS  Google Scholar 

  • Likens, G.E., C.T. Driscoll, D.C. Buso, T.G. Siccama, C.E. Johnson, G.M. Lovett, T.J. Fahey, W.A. Reiners, D.F. Ryan, C.W. Martin, and S.W. Bailey. 1998. The biogeochemistry of calcium at Hubbard brook. Biogeochemistry 41 (2): 89–173.

    Article  CAS  Google Scholar 

  • Limburg, K.E. 1995. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Marine Ecology Progress Series 119: 25–35.

    Article  Google Scholar 

  • Limburg, K.E., and M. Casini. 2018. Effect of marine hypoxia on Baltic Sea cod Gadus morhua: evidence from Otolith chemical proxies. Frontiers in Marine Science 5 (482): 1–12.

    Google Scholar 

  • Limburg, K., P. Landergren, L. Westin, M. Elfman, and P. Kristiansson. 2001. Flexible modes of anadromy in Baltic Sea trout: making the most of marginal spawning streams. Journal of Fish Biology 59 (3): 682–695.

    Article  Google Scholar 

  • Limburg, K.E., M. Elfman, and P. Kristiansson. 2003. Do stocked freshwater eels migrate? Evidence from the Baltic suggests "yes". American Fisheries Society Symposium 33: 275–284.

    Google Scholar 

  • Limburg, K.E., C. Olson, Y. Walther, D. Dale, C.P. Slomp, and H. Høie. 2011. Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proceedings of the National Academy of Sciences 108 (22): E177–E182.

    Article  Google Scholar 

  • Limburg, K.E., B.D. Walther, Z. Lu, G. Jackman, J. Mohan, Y. Walther, A. Nissling, P.K. Weber, and A.K. Schmitt. 2015. In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia. Journal of Marine Systems 141: 167–178.

    Article  Google Scholar 

  • Limburg, K.E., M.J. Wuenschel, K. Hüssy, Y. Heimbrand, and M. Samson. 2018. Making the Otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence. Reviews in Fisheries Science & Aquaculture 26 (4): 479–493.

    Article  Google Scholar 

  • Lin, S.-H., C.-W. Chang, Y. Iizuka, and W.-N. Tzeng. 2007. Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica. Journal of Experimental Marine Biology and Ecology 341 (2): 254–263.

    Article  CAS  Google Scholar 

  • Loewen, T.N., B. Carriere, J.D. Reist, N.M. Halden, and W.G. Anderson. 2016. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 202: 123–140.

    Article  CAS  Google Scholar 

  • Longerich, H.P., S.E. Jackson, and D. Gunther. 1996. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11 (9): 899–904.

    Article  CAS  Google Scholar 

  • Macdonald, J.I., and D.A. Crook. 2010. Variability in Sr: Ca and Ba: Ca ratios in water and fish otoliths across an estuarine salinity gradient. Marine Ecology Progress Series 413: 147–161.

    Article  CAS  Google Scholar 

  • Martin, G.B., and S.R. Thorrold. 2005. Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series 293: 223–232.

    Article  CAS  Google Scholar 

  • Martin, G.B., and M.J. Wuenschel. 2006. Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Marine Ecology Progress Series 324: 229–239.

    Article  CAS  Google Scholar 

  • Martin, G.B., S.R. Thorrold, and C.M. Jones. 2004. Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Canadian Journal of Fisheries and Aquatic Sciences 61 (1): 34–42.

    Article  CAS  Google Scholar 

  • May, E.B. 1973. Extensive oxygen depletion in Mobile Bay, Alabama. Limnology and Oceanography 18 (3): 353–366.

    Article  CAS  Google Scholar 

  • Melancon, S., B.J. Fryer, J.E. Gagnon, and S.A. Ludsin. 2008. Mineralogical approaches to the study of biomineralization in fish otoliths. Mineralogical Magazine 72 (2): 627–637.

    Article  CAS  Google Scholar 

  • Miller, J.A. 2009. The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops. Journal of Fish Biology 75 (1): 39–60.

    Article  CAS  Google Scholar 

  • Miller, J.A. 2011. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: Implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology 405 (1): 42–52.

    Article  CAS  Google Scholar 

  • Mohan, J.A., and B.D. Walther. 2015. Spatiotemporal variation of trace elements and stable isotopes in subtropical estuaries: II. Regional, local, and seasonal salinity-element relationships. Estuaries and Coasts 38 (3): 769–781.

    Article  CAS  Google Scholar 

  • Mohan, J.A., and B.D. Walther. 2018. Integrating multiple natural tags to link migration patterns and resource partitioning across a subtropical estuarine gradient. Estuaries and Coasts 41 (6): 1806–1820.

    Article  CAS  Google Scholar 

  • Mohan, J., M.S. Rahman, P. Thomas, and B. Walther. 2014. Influence of constant and periodic experimental hypoxic stress on Atlantic croaker otolith chemistry. Aquatic Biology 20 (1): 1–11.

    Article  Google Scholar 

  • Montiel, D., A. Lamore, J. Stewart, and N. Dimova. 2019. Is submarine groundwater discharge (SGD) important for the historical fish kills and harmful algal bloom events of Mobile Bay? Estuaries and Coasts 42 (2): 470–493.

    Article  CAS  Google Scholar 

  • Morales-Nin, B., S.C. Swan, J.D.M. Gordon, M. Palmer, A.J. Geffen, T. Shimmield, and T. Sawyer. 2005. Age-related trends in otolith chemistry of Merluccius merluccius from the North-Eastern Atlantic Ocean and the western Mediterranean Sea. Marine and Freshwater Research 56 (5): 599–607.

    Article  CAS  Google Scholar 

  • Morse, J.W., and M.L. Bender. 1990. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems. Chemical Geology 82: 265–277.

    Article  CAS  Google Scholar 

  • Nelson, T.R., and S.P. Powers. 2019. Validation of species specific otolith chemistry and salinity relationships. Environmental Biology of Fishes 102 (5): 801–815.

    Article  Google Scholar 

  • Nelson, T.R., D.R. DeVries, R.A. Wright, and J.E. Gagnon. 2015. Fundulus grandis otolith microchemistry as a metric of estuarine discrimination and oil exposure. Estuaries and Coasts 38 (6): 2044–2058.

    Article  CAS  Google Scholar 

  • Nelson, T.R., D.R. DeVries, and R.A. Wright. 2018. Salinity and temperature effects on element incorporation of gulf killifish Fundulus grandis Otoliths. Estuaries and Coasts 41 (4): 1164–1177.

    Article  CAS  Google Scholar 

  • Nims, M.K., and B.D. Walther. 2014. Contingents of southern flounder from subtropical estuaries revealed by otolith chemistry. Transactions of the American Fisheries Society 143 (3): 721–731.

    Article  Google Scholar 

  • Odum, H.T. 1951. The stability of the world strontium cycle. Science 114 (2964): 407–411.

    Article  CAS  Google Scholar 

  • Odum, H.T. 1957. Strontium in natural waters. publications of the. Institue of Marine Science, University of Texas 4 (2): 22–37.

    Google Scholar 

  • Osborne, W.E., M.W. Szabo, C.W. Copeland, and T.L. Neathery. 1989. Geologic map of Alabama: Tuscaloosa: state oil and gas Board of Alabama, 1989, special map 221. Geological Survey of Alabama.

  • Paton, C., J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26 (12): 2508–2518.

    Article  CAS  Google Scholar 

  • Phillis, C.C., D.J. Ostrach, B.L. Ingram, and P.K. Weber. 2011. Evaluating otolith Sr/Ca as a tool for reconstructing estuarine habitat use. Canadian Journal of Fisheries and Aquatic Sciences 68 (2): 360–373.

    Article  CAS  Google Scholar 

  • Porch, C.E. 2000. Status of the red drum stocks of the Gulf of Mexico. Southeast Fisheries Science Center, Miami, FL SFD-99/00–85: 1–62.

  • Powers, S.P., C.L. Hightower, J.M. Drymon, and M.W. Johnson. 2012. Age composition and distribution of red drum (Sciaenops ocellatus) in offshore waters of the north Central Gulf of Mexico: An evaluation of a stock under a federal harvest moratorium. Fishery Bulletin 110 (3): 283–292.

    Google Scholar 

  • Pringle, C.M., M.C. Freeman, and B.J. Freeman. 2000. Regional effects of hydrologic alterations on riverine macrobiota in the New World: tropical-temperate comparisons. BioScience 50 (9): 807–823.

    Article  Google Scholar 

  • Reis-Santos, P., R.P. Vasconcelos, S.E. Tanner, V.F. Fonseca, H.N. Cabral, and B.M. Gillanders. 2018. Extrinsic and intrinsic factors shape the ability of using otolith chemistry to characterize estuarine environmental histories. Marine Environmental Research 140: 332–341.

    Article  CAS  Google Scholar 

  • Rooker, J.R., R.T. Kraus, and D.H. Secor. 2004. Dispersive behaviors of black drum and red drum: is otolith Sr : Ca a reliable indicator of salinity history? Estuaries 27 (2): 334–341.

    Article  Google Scholar 

  • Ruttenberg, B.I., S.L. Hamilton, M.J.H. Hickford, G.L. Paradis, M.S. Sheehy, J.D. Standish, O. Ben-Tzvi, and R.R. Warner. 2005. Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Marine Ecology Progress Series 297: 273–281.

    Article  CAS  Google Scholar 

  • Schrandt, M.N., S.P. Powers, and J.F. Mareska. 2015. Habitat use and fishery dynamics of a heavily exploited coastal migrant, Spanish Mackerel. North American Journal of Fisheries Management 35 (2): 352–363.

    Article  Google Scholar 

  • Schroeder, W.W., and W. Wiseman Jr. 1988. The Mobile Bay estuary: stratification, oxygen depletion, and jubilees. In Hydrodynamics of estuaries. Vol 2., ed. B. Kjerfve, 41–52: CRC Press.

  • Schroeder, W.W., and W.J. Wiseman Jr. 1999. Geology and Hydrodynamics of Gulf of Mexico Estuaries. In Biogeochemistry of Gulf of Mexio Estuaries, ed. T.S. Bianchi, J.R. Pennock and R.R. Twilley, 3–28: John Wiley & Sons.

  • Schroeder, W.W., S.P. Dinnel, and W.J. Wiseman. 1990. Salinity stratification in a river-dominated estuary. Estuaries 13 (2): 145–154.

    Article  Google Scholar 

  • Secor, D.H., J.R. Rooker, E. Zlokovitz, and V.S. Zdanowicz. 2001. Identification of riverine, estuarine, and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints. Marine Ecology Progress Series 211: 245–253.

    Article  CAS  Google Scholar 

  • Shaw, T.J., W.S. Moore, J. Kloepfer, and M.A. Sochaski. 1998. The flux of barium to the coastal waters of the southeastern USA: the importance of submarine groundwater discharge. Geochimica et Cosmochimica Acta 62 (18): 3047–3054.

    Article  CAS  Google Scholar 

  • Slomp, C.P., J.F.P. Malschaert, L. Lohse, and W. Van Raaphorst. 1997. Iron and manganese cycling in different sedimentary environments on the North Sea continental margin. Continental Shelf Research 17 (9): 1083–1117.

    Article  Google Scholar 

  • Smith, W.D., J.A. Miller, and S.S. Heppell. 2013. Elemental markers in elasmobranchs: effects of environmental history and growth on vertebral chemistry. PLoS One 8 (10): e62423.

    Article  CAS  Google Scholar 

  • Solis, R.S., and G.L. Powell. 1999. Hydrography, mixing characteristics, and residence times of Gulf of Mexico estuaries. In Biogeochemistry of Gulf of Mexico Estuaries, ed. T.S. Bianchi, J.R. Pennock and R.R. Twilley, 29-62: John Wiley & Sons.

  • Sturrock, A.M., C.N. Trueman, A.M. Darnaude, and E. Hunter. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology 81 (2): 766–795.

    Article  CAS  Google Scholar 

  • Sturrock, A.M., E. Hunter, J.A. Milton, R.C. Johnson, C.P. Waring, C.N. Trueman, and E. Leder. 2015. Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution 6 (7): 806–816.

    Article  Google Scholar 

  • Surge, D.M., and K.C. Lohmann. 2002. Temporal and spatial differences in salinity and water chemistry in SW Florida estuaries: effects of human-impacted watersheds. Estuaries 25 (3): 393–408.

    Article  CAS  Google Scholar 

  • Tabouret, H., G. Bareille, F. Claverie, C. Pécheyran, P. Prouzet, and O.F.X. Donard. 2010. Simultaneous use of strontium:calcium and barium:calcium ratios in otoliths as markers of habitat: application to the European eel (Anguilla anguilla) in the Adour basin, south West France. Marine Environmental Research 70 (1): 35–45.

    Article  CAS  Google Scholar 

  • Thomas, O.R.B., and S.E. Swearer. 2019. Otolith biochemistry—a review. Reviews in Fisheries Science & Aquaculture 27 (4): 458–489.

    Article  Google Scholar 

  • Thomas, O.R.B., K. Ganio, B.R. Roberts, and S.E. Swearer. 2017. Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics 9 (3): 239–249.

    Article  CAS  Google Scholar 

  • Tipper, E.T., A. Galy, J. Gaillardet, M.J. Bickle, H. Elderfield, and E.A. Carder. 2006. The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth and Planetary Science Letters 250 (1): 241–253.

    Article  CAS  Google Scholar 

  • VanderKooy, S. 2009. A practical handbook for determining the ages of Gulf of Mexico fishes second edition. Gulf States Marine Fisheries Commission 167: 1–157.

    Google Scholar 

  • Wadleigh, M.A., J. Veizer, and C. Brooks. 1985. Strontium and its isotopes in Canadian rivers: fluxes and global implications. Geochimica et Cosmochimica Acta 49 (8): 1727–1736.

    Article  CAS  Google Scholar 

  • Walther, B.D., and K.E. Limburg. 2012. The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology 81 (2): 796–825.

    Article  CAS  Google Scholar 

  • Walther, B.D., and M.K. Nims. 2014. Spatiotemporal variation of trace elements and stable isotopes in subtropical estuaries: I. freshwater endmembers and mixing curves. Estuaries and Coasts 38 (3): 754–768.

    Article  CAS  Google Scholar 

  • Walther, B.D., and S.R. Thorrold. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology-Progress Series 311: 125–130.

    Article  CAS  Google Scholar 

  • Wells, B.K., B.E. Rieman, J.L. Clayton, D.L. Horan, and C.M. Jones. 2003. Relationships between water, Otolith, and scale chemistries of Westslope cutthroat trout from the Coeur d'Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Transactions of the American Fisheries Society 132 (3): 409–424.

    Article  CAS  Google Scholar 

  • Wen, L.-S., A. Shiller, P.H. Santschi, and G. Gill. 1999. Trace element behavior in Gulf of Mexico estuaries. In Biogeochemistry of Gulf of Mexico Estuaries, ed. T.S. Bianchi, J.R. Pennock and R.R. Twilley, 303-346: John Wiley & Sons.

  • Williams, M.R., and J.M. Melack. 1997. Solute export from forested and partially deforested chatchments in the Central Amazon. Biogeochemistry 38 (1): 67–102.

    Article  CAS  Google Scholar 

  • Williams, M., C. Hopkinson, E. Rastetter, J. Vallino, and L. Claessens. 2005. Relationships of land use and stream solute concentrations in the Ipswich River basin, northeastern Massachusetts. Water, Air, and Soil Pollution 161 (1): 55–74.

    Article  CAS  Google Scholar 

  • Woodcock, S.H., B.M. Gillanders, A.R. Munro, F. McGovern, D.A. Crook, and A.C. Sanger. 2011. Using enriched stable isotopes of barium and magnesium to batch mark otoliths of larval golden perch (Macquaria ambigua, Richardson). Ecology of Freshwater Fish 20 (1): 157–165.

    Article  Google Scholar 

  • Woodcock, S.H., A.R. Munro, D.A. Crook, and B.M. Gillanders. 2012. Incorporation of magnesium into fish otoliths: determining contribution from water and diet. Geochimica et Cosmochimica Acta 94: 12–21.

    Article  CAS  Google Scholar 

  • Woodcock, S.H., C.A. Grieshaber, and B.D. Walther. 2013. Dietary transfer of enriched stable isotopes to mark otoliths, fin rays, and scales. Canadian Journal of Fisheries and Aquatic Sciences 70 (1): 1–4.

    Article  CAS  Google Scholar 

  • Zimmerman, C.E. 2005. Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids. Canadian Journal of Fisheries and Aquatic Sciences 62 (1): 88–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work would not have been possible without field help from Pearce Cooper, Kelly Boyle, Crystal Hightower, Courtney Buckley, Justin McDonald, Jacob Eagleton, and Desaray Swanson of the USA/DISL Fisheries Ecology Lab who all deserve acknowledgement. Thank you to Jared Chrisp and Meghan Angelina from Clemson University Fisheries for Red Drum otoliths from the Mobile-Tensaw delta and to the Alabama Marine Resources Division for otoliths from their gillnet survey. Laura Linn from the DISL instrumentation lab also deserves acknowledgement for her help with ICPMS analysis. We also thank the authors from Farmer et al. (2013) for providing their raw data for approximate otolith partition calculations. Finally we thank two reviewers for their time and comments which have greatly improved the manuscript. Funding for this work was provided by the National Fish and Wildlife Foundation, Gulf Environment Benefit Fund via a subcontract from the Alabama Department of Conservation and Natural Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Reid Nelson.

Additional information

Communicated by Wen-Xiong Wang

Electronic Supplementary Material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, T.R., Powers, S.P. Elemental Concentrations of Water and Otoliths as Salinity Proxies in a Northern Gulf of Mexico Estuary. Estuaries and Coasts 43, 843–864 (2020). https://doi.org/10.1007/s12237-019-00686-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00686-z

Keywords

Navigation