Skip to main content
Log in

Salinity and Temperature Effects on Element Incorporation of Gulf Killifish Fundulus grandis Otoliths

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Many applications of otolith chemistry use the ratios of strontium (Sr) and barium (Ba) to calcium (Ca) as indicators of salinity exposure, because typically, as salinity increases, Sr concentration increases and Ba concentration decreases. However, these relationships are nonlinear, can be confounded by temperature, and investigations of salinity and temperature effects on otolith chemistry produce varied results. To determine the relationships of temperature and salinity on Sr:Ca and Ba:Ca in otoliths, we used free ranging Gulf Killifish (Fundulus grandis) in the northern Gulf of Mexico. This species is ideal because it is euryhaline and exhibits limited movements. Otolith edge Sr:Ca and Ba:Ca ratios were related to the previous 30-day mean salinity and temperature experienced by fish. The best model to describe otolith Sr:Ca was one that included a positive asymptotic relationship for both salinity and temperature. However, the salinity asymptotic maximum was reached at 10 psu and changes in otolith Sr:Ca above 10 psu were indicative of temperature changes. Otolith Ba:Ca exhibited an exponential decreasing relationship with salinity, and an exponential increasing relationship with temperature, and these two models combined best explained otolith Ba:Ca. Above 10 psu, the modeled Ba:Ca ratio continued to decrease demonstrating that this ratio may be indicative of salinity changes beyond this value. Therefore, using both Sr:Ca and Ba:Ca could be beneficial in reconstructing fish environmental histories. Temperature effects on otolith element ratios could confound past salinity reconstructions as well and must be a result of endogenous processes, given that no relationship between temperature and water chemistry existed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albuquerque, C.Q., N. Miekeley, J.H. Muelbert, B.D. Walther, and A.J. Jaureguizar. 2012. Estuarine dependency in a marine fish evaluated with otolith chemistry. Marine Biology 159 (10): 2229–2239. https://doi.org/10.1007/s00227-012-2007-5.

    Article  CAS  Google Scholar 

  • Anstead, K.A., J.J. Schaffler, and C.M. Jones. 2015. Coastwide otolith signatures of juvenile Atlantic menhaden, 2009–2011. Transactions of the American Fisheries Society 144 (1): 96–106.

    Article  Google Scholar 

  • Barnes, T.C., and B.M. Gillanders. 2013. Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Canadian Journal of Fisheries and Aquatic Sciences 70 (8): 1159–1166. https://doi.org/10.1139/cjfas-2012-0442.

    Article  CAS  Google Scholar 

  • Bath, G.E., S.R. Thorrold, C.M. Jones, S.E. Campana, J.W. McLaren, and J.W.H. Lam. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 64 (10): 1705–1714. https://doi.org/10.1016/s0016-7037(99)00419-6.

    Article  CAS  Google Scholar 

  • Brett, J.R. 1979. Environmental factors and growth. In Fish physiology, volume 8: Bioenergetics and growth, ed. W.S. Hoar, D.J. Randall, and J.R. Brett, 599–675. New York: Academic Press.

    Chapter  Google Scholar 

  • Brown, R.J., and K.P. Severin. 2009. Otolith chemistry analyses indicate that water Sr: Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences 66 (10): 1790–1808. https://doi.org/10.1139/F09-112.

    Article  CAS  Google Scholar 

  • Brownie, C., and D.D. Boos. 1994. Type I error robustness of ANOVA and ANOVA on ranks when the number of treatments is large. Biometrics 50 (2): 542–549. https://doi.org/10.2307/2533399.

    Article  CAS  Google Scholar 

  • Campana, S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263–297. https://doi.org/10.3354/meps188263.

    Article  CAS  Google Scholar 

  • Campana, S.E., and J.D. Neilson. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42 (5): 1014–1032. https://doi.org/10.1139/f85-127.

    Article  Google Scholar 

  • Carroll, J., K.K. Falkner, E.T. Brown, and W.S. Moore. 1993. The role of the Ganges-Brahmaputra mixing zone in supplying barium and 226Ra to the bay of Bengal. Geochimica et Cosmochimica Acta 57 (13): 2981–2990. https://doi.org/10.1016/0016-7037(93)90287-7.

    Article  CAS  Google Scholar 

  • Chesney, E.J., B.M. McKee, T. Blanchard, and L.H. Chan. 1998. Chemistry of otoliths from juvenile menhaden Brevoortia patronus: evaluating strontium, strontium: calcium and strontium isotope ratios as environmental indicators. Marine Ecology Progress Series 171: 261–273.

    Article  CAS  Google Scholar 

  • Coffey, M., F. Dehairs, O. Collette, G. Luther, T. Church, and T. Jickells. 1997. The behaviour of dissolved barium in estuaries. Estuarine, Coastal and Shelf Science 45 (1): 113–121. https://doi.org/10.1006/ecss.1996.0157.

    Article  CAS  Google Scholar 

  • Colbert, D., and J. McManus. 2005. Importance of seasonal variability and coastal processes on estuarine manganese and barium cycling in a Pacific northwest estuary. Continental Shelf Research 25 (11): 1395–1414. https://doi.org/10.1016/j.csr.2005.02.003.

    Article  Google Scholar 

  • de Villiers, S. 1999. Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth and Planetary Science Letters 171 (4): 623–634. https://doi.org/10.1016/s0012-821x(99)00174-0.

    Article  Google Scholar 

  • de Villiers, S., G.T. Shen, and B.K. Nelson. 1994. The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)seawater and skeletal growth parameters. Geochimica et Cosmochimica Acta 58 (1): 197–208.

    Article  Google Scholar 

  • DiMaria, R.A., J.A. Miller, and T.P. Hurst. 2010. Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus Macrocephalus. Environmental Biology of Fishes 89 (3): 453–462. https://doi.org/10.1007/s10641-010-9665-2.

    Article  Google Scholar 

  • Elsdon, T.S., and B.M. Gillanders. 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences 59 (11): 1796–1808. https://doi.org/10.1139/f02-154.

    Article  CAS  Google Scholar 

  • Elsdon, T.S., and B.M. Gillanders. 2005. Strontium incorporation into calcified structures: separating the effects of ambient water concentration and exposure time. Marine Ecology Progress Series 285: 233–243.

    Article  CAS  Google Scholar 

  • Farmer, T.M., D.R. DeVries, R.A. Wright, and J.E. Gagnon. 2013. Using seasonal variation in otolith microchemical composition to indicate largemouth bass and southern flounder residency patterns across an estuarine salinity gradient. Transactions of the American Fisheries Society 142 (5): 1415–1429. https://doi.org/10.1080/00028487.2013.806348.

    Article  CAS  Google Scholar 

  • Fodrie, F.J., and S.Z. Herzka. 2008. Tracking juvenile fish movement and nursery contribution within arid coastal embayments via otolith microchemistry. Marine Ecology - Progress Series 361: 253–265. https://doi.org/10.3354/meps07390.

    Article  Google Scholar 

  • Gaetani, G.A., and A.L. Cohen. 2006. Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochimica et Cosmochimica Acta 70 (18): 4617–4634. https://doi.org/10.1016/j.gca.2006.07.008.

    Article  CAS  Google Scholar 

  • Gillanders, B.M., C. Izzo, Z.A. Doubleday, and Q. Ye. 2015. Partial migration: growth varies between resident and migratory fish. Biology Letters 11 (3): 20140850.

    Article  Google Scholar 

  • Hanor, J.S., and L.H. Chan. 1977. Non-conservative behavior of barium during mixing of Mississippi River and Gulf of Mexico waters. Earth and Planetary Science Letters 37 (2): 242–250. https://doi.org/10.1016/0012-821x(77)90169-8.

    Article  CAS  Google Scholar 

  • Joung, D., and A.M. Shiller. 2014. Dissolved barium behavior in Louisiana shelf waters affected by the Mississippi/Atchafalaya River mixing zone. Geochimica et Cosmochimica Acta 141: 303–313.

    Article  CAS  Google Scholar 

  • Kahn, A., and G.D. Rayner. 2003. Robustness to non-normality of common tests for the many-sample location problem. Journal of Applied Mathematics and Decision Sciences 7: 187–206.

    Article  Google Scholar 

  • Kalish, J.M. 1989. Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. Journal of Experimental Marine Biology and Ecology 132 (3): 151–178.

    Article  CAS  Google Scholar 

  • Kalish, J.M. 1991. Determinants of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus. Marine Ecology-Progress Series 74 (2–3): 137–159. https://doi.org/10.3354/meps074137.

    Article  CAS  Google Scholar 

  • Kalish, J.M. 1992. Formation of a stress-induced chemical check in fish otoliths. Journal of Experimental Marine Biology and Ecology 162 (2): 265–277. https://doi.org/10.1016/0022-0981(92)90206-P.

    Article  CAS  Google Scholar 

  • Kerr, L.A., D.H. Secor, and P.M. Piccoli. 2009. Partial migration of fishes as exemplified by the estuarine-dependent white perch. Fisheries 34 (3): 114–123.

    Article  Google Scholar 

  • Kraus, R.T., and D.H. Secor. 2004a. Dynamics of white perch Morone Americana population contingents in the Patuxent River estuary, Maryland, USA. Marine Ecology Progress Series 279: 247–259.

    Article  Google Scholar 

  • Kraus, R.T., and D.H. Secor. 2004b. Incorporation of strontium into otoliths of an estuarine fish. Journal of Experimental Marine Biology and Ecology 302 (1): 85–106. https://doi.org/10.1016/j.jembe.2003.10.004.

    Article  CAS  Google Scholar 

  • Longerich, H.P., S.E. Jackson, and D. Gunther. 1996. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11 (9): 899–904. https://doi.org/10.1039/ja9961100899.

    Article  CAS  Google Scholar 

  • López-Duarte, P.C., F.J. Fodrie, O.P. Jensen, A. Whitehead, F. Galvez, B. Dubansky, and K.W. Able. 2016. Is exposure to Macondo oil reflected in the Otolith chemistry of marsh-resident fish? PLoS One 11 (9): e0162699. https://doi.org/10.1371/journal.pone.0162699.

    Article  Google Scholar 

  • Lowe, M.R., D.R. DeVries, R.A. Wright, S.A. Ludsin, and B.J. Fryer. 2009. Coastal largemouth bass (Micropterus salmoides) movement in response to changing salinity. Canadian Journal of Fisheries and Aquatic Sciences 66 (12): 2174–2188. https://doi.org/10.1139/f09-152.

    Article  CAS  Google Scholar 

  • Lowe, M.R., D.R. DeVries, R.A. Wright, S.A. Ludsin, and B.J. Fryer. 2011. Otolith microchemistry reveals substantial use of freshwater by southern flounder in the northern Gulf of Mexico. Estuaries and Coasts 34 (3): 630–639. https://doi.org/10.1007/s12237-010-9335-9.

    Article  CAS  Google Scholar 

  • Macdonald, J.I., and D.A. Crook. 2010. Variability in Sr: Ca and Ba: Ca ratios in water and fish otoliths across an estuarine salinity gradient. Marine Ecology Progress Series 413: 147–161.

    Article  CAS  Google Scholar 

  • Martin, G.B., and S.R. Thorrold. 2005. Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series 293: 223–232.

    Article  CAS  Google Scholar 

  • Martin, G.B., S.R. Thorrold, and C.M. Jones. 2004. Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Canadian Journal of Fisheries and Aquatic Sciences 61 (1): 34–42. https://doi.org/10.1139/f03-143.

    Article  CAS  Google Scholar 

  • Miller, J.A. 2009. The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes Melanops. Journal of Fish Biology 75 (1): 39–60. https://doi.org/10.1111/j.1095-8649.2009.02262.x.

    Article  CAS  Google Scholar 

  • Miller, J.A. 2011. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology 405 (1): 42–52. https://doi.org/10.1016/j.jembe.2011.05.017.

    Article  CAS  Google Scholar 

  • Mohan, J.A., and B.D. Walther. 2014. Spatiotemporal variation of trace elements and stable isotopes in subtropical estuaries: II. Regional, local, and seasonal salinity-element relationships. Estuaries and Coasts 38 (3): 769–781.

    Article  Google Scholar 

  • Mohan, J.A., R.A. Rulifson, D.R. Corbett, and N.M. Halden. 2012. Validation of Oligohaline elemental Otolith signatures of striped bass by use of in situ caging experiments and water chemistry. Marine and Coastal Fisheries 4 (1): 57–70. https://doi.org/10.1080/19425120.2012.656533.

    Article  Google Scholar 

  • Morissette, O., F. Lecomte, G. Verreault, M. Legault, and P. Sirois. 2016. Fully equipped to succeed: migratory contingents seen as an intrinsic potential for striped bass to exploit a heterogeneous environment early in life. Estuaries and Coasts 39 (2): 571–582. https://doi.org/10.1007/s12237-015-0015-7.

    Article  CAS  Google Scholar 

  • Nelson, T.R., D. Sutton, and D.R. DeVries. 2014. Summer movements of the Gulf killifish (Fundulus Grandis) in a northern Gulf of Mexico salt marsh. Estuaries and Coasts 37 (5): 1295–1300. https://doi.org/10.1007/s12237-013-9762-5.

    Article  Google Scholar 

  • Nelson, T.R., D.R. DeVries, R.A. Wright, and J.E. Gagnon. 2015. Fundulus grandis otolith microchemistry as a metric of estuarine discrimination and oil exposure. Estuaries and Coasts 38 (6): 2044–2058. https://doi.org/10.1007/s12237-014-9934-y.

    Article  CAS  Google Scholar 

  • Nims, M.K., and B.D. Walther. 2014. Contingents of southern flounder from subtropical estuaries revealed by otolith chemistry. Transactions of the American Fisheries Society 143 (3): 721–731.

    Article  Google Scholar 

  • Radtke, R.L., D.W. Townsend, S.D. Folsom, and M.A. Morrison. 1990. Strontium: calcium concentration ratios in otoliths of herring larvae as indicators of environmental histories. Environmental Biology of Fishes 27 (1): 51–61. https://doi.org/10.1007/BF00004904.

    Article  Google Scholar 

  • Reis-Santos, P., S.E. Tanner, T.S. Elsdon, H.N. Cabral, and B.M. Gillanders. 2013. Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology 446: 245–252. https://doi.org/10.1016/j.jembe.2013.05.027.

    Article  CAS  Google Scholar 

  • Rooker, J.R., R.T. Kraus, and D.H. Secor. 2004. Dispersive behaviors of black drum and red drum: Is otolith Sr : Ca a reliable indicator of salinity history? Estuaries 27 (2): 334–341. https://doi.org/10.1007/bf02803389.

    Article  Google Scholar 

  • Rozas, L.P., and D.J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence. Marine Ecology-Progress Series 96 (2): 147–157. https://doi.org/10.3354/meps096147.

    Article  Google Scholar 

  • Rozas, L.P., and R.J. Zimmerman. 2000. Small-scale patterns of nekton use among marsh and adjacent shallow nonvegetated areas of the Galveston Bay Estuary, Texas (USA). Marine Ecology-Progress Series 193: 217–239. https://doi.org/10.3354/meps193217.

    Article  Google Scholar 

  • Schroeder, W.W., S.P. Dinnel, and W.J. Wiseman. 1990. Salinity stratification in a river-dominated estuary. Estuaries 13 (2): 145–154.

    Article  Google Scholar 

  • Secor, D.H., A. Hendersonarzapalo, and P.M. Piccoli. 1995. Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes. Journal of Experimental Marine Biology and Ecology 192 (1): 15–33. https://doi.org/10.1016/0022-0981(95)00054-u.

    Article  Google Scholar 

  • Shaw, T.J., W.S. Moore, J. Kloepfer, and M.A. Sochaski. 1998. The flux of barium to the coastal waters of the southeastern USA: the importance of submarine groundwater discharge. Geochimica et Cosmochimica Acta 62 (18): 3047–3054. https://doi.org/10.1016/s0016-7037(98)00218-x.

    Article  CAS  Google Scholar 

  • Smith, S.V., R.W. Buddemeier, R.C. Redalje, and J.E. Houck. 1979. Strontium-calcium thermometry in coral skeletons. Science 204 (4391): 404–407. https://doi.org/10.1126/science.204.4391.404.

    Article  CAS  Google Scholar 

  • Sturrock, A.M., C.N. Trueman, A.M. Darnaude, and E. Hunter. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology 81 (2): 766–795. https://doi.org/10.1111/j.1095-8649.2012.03372.x.

    Article  CAS  Google Scholar 

  • Townsend, D.W., R.L. Radtke, S. Corwin, and D.A. Libby. 1992. Strontium: calcium ratios in juvenile Atlantic herring Clupea harengus L. otoliths as a function of water temperature. Journal of Experimental Marine Biology and Ecology 160 (1): 131–140. https://doi.org/10.1016/0022-0981(92)90115-Q.

    Article  CAS  Google Scholar 

  • Townsend, D.W., R.L. Radtke, D.P. Malone, and J.P. Wallinga. 1995. Use of otolith strontium:calcium ratios for hindcasting larval cod Gadus morhua distributions relative to water masses on Georges Bank. Marine Ecology Progress Series 119 (1/3): 37–44.

    Article  Google Scholar 

  • Underwood, A.J. 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vasconcelos, R.P., P. Reis-Santos, S. Tanner, V. Fonseca, C. Latkoczy, D. Gunther, M.J. Costa, and H. Cabral. 2007. Discriminating estuarine nurseries for five fish species through otolith elemental fingerprints. Marine Ecology-Progress Series 350: 117–126. https://doi.org/10.3354/meps07109.

    Article  CAS  Google Scholar 

  • Walther, B.D., and K.E. Limburg. 2012. The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology 81 (2): 796–825. https://doi.org/10.1111/j.1095-8649.2012.03371.x.

    Article  CAS  Google Scholar 

  • Walther, B.D., and M.K. Nims. 2014. Spatiotemporal variation of trace elements and stable isotopes in subtropical estuaries: I. Freshwater endmembers and mixing curves. Estuaries and Coasts 38 (3): 754–768.

    Article  Google Scholar 

  • Walther, B.D., and S.R. Thorrold. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology-Progress Series 311: 125–130. https://doi.org/10.3354/meps311125.

    Article  CAS  Google Scholar 

  • Walther, B.D., M.J. Kingsford, M.D. O’Callaghan, and M.T. McCulloch. 2010. Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environmental Biology of Fishes 89 (3): 441–451. https://doi.org/10.1007/s10641-010-9661-6.

    Article  Google Scholar 

  • Webb, S.D., S.H. Woodcock, and B.M. Gillanders. 2012. Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature. Marine Ecology Progress Series 453: 189–199. https://doi.org/10.3354/meps09653.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project would not have been possible without field help and we would like to thank Adrian Stanfill and all other Ireland Center staff and students who helped collect samples, as well as Dr. Ash Bullard for help with sample site selection and protocol. Special thanks to Tammy DeVries for pulling miniscule otoliths and dealing with strong H2O2 for cleaning purposes. Two reviewers greatly improved the manuscript and we thank them for their comments.Finally, we would like to thank Dr. Joel E. Gagnon and Dr. Mohamed Shaheen of the University of Windsor GLIER for the help with the LA-ICP-MS.

Funding

Funding for this research was provided by British Petroleum. This manuscript was supported by the Alabama Agricultural Experiment Station and the Hatch program of the National Institute of Food and Agriculture, U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Reid Nelson.

Additional information

Communicated by Mark S. Peterson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, T.R., DeVries, D.R. & Wright, R.A. Salinity and Temperature Effects on Element Incorporation of Gulf Killifish Fundulus grandis Otoliths. Estuaries and Coasts 41, 1164–1177 (2018). https://doi.org/10.1007/s12237-017-0341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0341-z

Keywords

Navigation