Skip to main content

Advertisement

Log in

Gibberellic Acid and Ethephon Alter Potato Minituber Bud Dormancy and Improve Seed Tuber Yield

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

While greenhouse production of minitubers has markedly improved production of disease free seed, minituber dormancy can be an issue. This study tested application of abscisic acid (ABA), ethylene (E), gibberellic acid (GA) and the combination of E+GA on release of dormancy in potato minitubers, sprout development, and subsequent effects on field plant growth and yield of seed tubers. Cultivars were categorized on the basis of known dormancy responses as follows: (1) one short dormancy cultivar, Silverton Russet, (2) three intermediate dormancy cultivars, Russet Norkotah (RNK), Sangre S-14 and Desiree, and (3) two long dormancy cultivars, Nooksack and Russet Norkotah Selection 3 (RNK-S3). Eighty eight to 93% of E+GA treated minitubers from cultivars in the long dormancy group developed sprouts signaling the end of dormancy within 5 weeks, while the control and ABA treated minitubers were totally dormant with 0% bud break. With the intermediate cultivars E+GA treated minitubers had 100% bud break compared to 37 to 55% bud break in the control minitubers. Treated long dormant minitubers also had 2.1 to 2.5 more sprouts per minituber and 1.6 to 2.4 cm longer sprouts. E+GA treated minitubers planted in field plot trials produced mature plants that were 19 to 36 cm per plant taller, with up to 3.9 to 8.8 more seed tubers per plant, and 1.9 to 4.2 kg per plot higher yields. The laboratory protocol developed to predict dormancy breaking attributes provided a reasonable estimate of cultivar dormancy under field conditions.

Resumen

Mientras que la producción de minituberculos en invernadero ha mejorado mucho la producción de semilla libre de enfermedades, la dormancia de los minis puede ser un tema. En este estudio se probó la aplicación de ácido abscísico (ABA), etileno (E), ácido giberélico (GA) y la combinación de E+GA para romper dormancia en minis de papa, desarrollo del brote, y efectos subsecuentes en el crecimiento de la planta en el campo y en el rendimiento de tubérculo semilla. Las variedades fueron categorizadas con base a las respuestas conocidas de dormancia como sigue: (1) una variedad de corta dormancia, Silverton Russet, (2) tres variedades de dormancia intermedia, Russet Norkotah (RNK), Sangre S-14 y Desiree, y (3) dos variedades de dormancia prolongada, Nooksack y Russet Norkotah Selección 3 (RNK-S3). De 88% a 93% de los minis tratados con E+GA de las variedades del grupo de larga dormancia desarrollaron brotes en señal del fin de la dormancia dentro de cinco semanas, mientras que el testigo y los minitubérculos tratados con ABA estuvieron completamente en dormancia con 0% del rompimiento de yemas. Con los cultivares intermedios los minitubérculos tratados con E+GA, tuvieron 100% de rompimiento de yemas comparados con 37% a 55% en los testigos. Los minis de larga dormancia también tuvieron de 2.1 a 2.5 más yemas por minitubérculo y brotes de 1.6 a 2.4 cm más largos. Los tratados con E+GA plantados en ensayos de campo produjeron plantas maduras que fueron de 19 a 36 cm más altas, con hasta 3.9 a 8.8 más tubérculos semilla por planta, y 1.9 a 4.2 kg más altos rendimientos por lote. El protocolo de laboratorio elaborado para predecir los atributos de rompimiento de la dormancia proporcionó una estimación razonable de la dormancia varietal bajo condiciones de campo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, S.M.M., D.P. Murr, and L. Kristof. 1994. The effect of ethylene and of inhibitors of protein and nucleic acid syntheses on dormancy break and subsequent sprout growth. Potato Research 37(1): 25–33.

    Article  CAS  Google Scholar 

  • Bhargava, R. 1997. Changes in abscisic and gibberellic acids contents during the release of potato seed dormancy. Biologia Plantarum 39(1): 41–45.

    Article  CAS  Google Scholar 

  • Bialek, K. 1974. A preliminary study of gibberellin-like substances in potato tubers. Zeitschrift Fur Pflanzenphysiologie 71(4): 370–372.

    CAS  Google Scholar 

  • Bialek, K., and M. Bielinska-Czarnecka. 1975. Gibberellin-like substances in potato-tubers during their growth and dormancy. Bulletin De L Academie Polonaise Des Sciences-Serie Des Sciences Biologiques 23(3): 213–218.

    CAS  Google Scholar 

  • Burton, W.G., A. van Es, and K.J. Hartmans. 1992. The physics and physiology of storage. In The potato crop, ed. Paul M. Harris, 608–727. London: Chapman and Hall.

    Google Scholar 

  • Claassens, M.M.J., and D. Vreugdenhil. 2000. Is dormancy breaking of potato tubers the reverse of tuber initiation? Potato Research 43(4): 347–369.

    Article  CAS  Google Scholar 

  • Claassens, M.M.J., J. Verhees, L.H.W. van der Plas, A.R. van der Krol, and D. Vreugdenhil. 2005. Ethanol breaks dormancy of the potato tuber apical bud. Journal of Experimental Botany 56: 2515–2525.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, W.K., G. Hawkins, J. Mcinerney, and M. Goddard. 1992. Development of a dormancy release technology: A review. American Potato Journal 69(7): 437–445.

    Article  CAS  Google Scholar 

  • Dogonadze, M.Z., N.P. Korableva, T.A. Platonova, and G.L. Shaposhnikov. 2000. Effects of gibberellin and auxin on the synthesis of abscisic acid and ethylene in buds of dormant and sprouting potato tubers. Applied Biochemistry and Microbiology 36(5): 507–509.

    Article  Google Scholar 

  • Holmes, J.C., R.W. Lang, and A.K. Sing. 1970. The effect of five growth regulators on apical dominance in potato seed tubers and on subsequent tuber production. Potato Research 13: 342–352.

    Article  CAS  Google Scholar 

  • Korableva, N.P., and E.P. Ladyzhenskaya. 1995. Mechanism of hormonal-regulation of potato (Solanum tuberosum L.) tuber dormancy. Biochemistry (Moscow) 60(1): 33–38.

    Google Scholar 

  • Korableva, N.P., L.S. Sukhova, M.Z. Dogonadze, and I. Machackova. 1989. Hormonal regulation of potato tuber dormancy and resistance to pathogens. In Signals in plant development, ed. J. Krekule and F. Seidlova, 65–71. The Hague: SBS Academic.

    Google Scholar 

  • Lommen, W.J.M. 1993. Post-harvest characteristics of potato minitubers with different fresh weights and from different harvests. I. Dry-matter concentration and dormancy. Potato Research 36(4): 265–272.

    Article  Google Scholar 

  • Lommen, W.J.M., and P.C. Struik. 1992. Production of potato minitubers by repeated harvesting: effects of crop husbandry on yield parameters. Potato Research 35: 419–432.

    Article  Google Scholar 

  • Mikitzel, L.J. 1993. Influencing seed tuber yield of Ranger Russet and Shepody potatoes with gibberellic acid. American Potato Journal 70(9): 667–676.

    Article  CAS  Google Scholar 

  • Minato, T., Y. Kikuta, and Y. Okazawa. 1979. Effect of ethylene on sprout growth and endogenous growth substances of potato plants. Journal of the Faculty of Agriculture Hokkaido University 59: 239–248.

    CAS  Google Scholar 

  • Prange, R.K., W. Kalt, B.J. Daniels-Lake, C.L. Liew, R.T. Page, J.R. Walsh, P. Dean, and R. Coffin. 1998. Using ethylene as a sprout control agent in stored ‘Russet Burbank’ potatoes. The American Society for Horticultural Science 123(3): 463–469.

    CAS  Google Scholar 

  • Rama, M.V., and P. Narasimham. 1982. A comparative-study on the effect of gibberellic acid, ethrel and ethylene chloride on potato (Solanum tuberosum L.) sprouting. Journal of Food Science and Technology-Mysore 19(4): 144–147.

    CAS  Google Scholar 

  • Rappaport, L., and N. Wolf. 1969. The problem of dormancy in potato tubers and related structures. In: Dormancy and survival. Symposia of the Society for Experimental Biology 23: 219–240.

    PubMed  CAS  Google Scholar 

  • Rekha, M.N.S., M.V. Rama, and P. Narasimham. 1983. Synergistic action of gibberellin and ethrel on the inducement of sprouting in potatoes. Journal of Food Science and Technology-Mysore 20(3): 120–122.

    CAS  Google Scholar 

  • Rylski, I., L. Pappaport, and H.K. Pratt. 1974. Dual effects of ethylene on potato dormancy and sprout growth. Plant Physiology 53: 658–662.

    Article  PubMed  CAS  Google Scholar 

  • Shashirekha, M.N., and P. Narasimham. 1989. Pre-planting treatment of seed potato-tuber pieces to break dormancy, control tuber piece decay and improve yield. Experimental Agriculture 25(1): 27–33.

    Article  Google Scholar 

  • Shih, C.Y., and L. Rappaport. 1971. Regulation of bud rest in tubers of potato, Solanum tuberosum L. VIII. Early effects of gibberellin A3 and abscisic acid on ultra structure. Plant Physiolology 48(1): 31–35.

    Article  CAS  Google Scholar 

  • Smith, O.E., and L. Rappaport. 1961. Endogenous gibberellins in resting and sprouting potato tubers. Advances in Chemistry 46(6): 42–48.

    Article  Google Scholar 

  • Stallknecht, G.F. 1984. Application of plant growth regulators to potatoes: Production and research. In Plant growth regulating chemicals, vol. II, ed. L.G. Nickell, 161–176. Boca Raton: CRC.

    Google Scholar 

  • Struik, P.C., and W.J.M. Lommen. 1990. Production, storage and use of micro and minitubers. Proc. 11th Triennial Conf. Eur. Assoc. Potato Research 122–133. Edinburgh, UK.

  • Sukhova, L.S., I. Machackova, J. Eder, N.D. Bibik, and N.P. Korableva. 1993. Changes in the levels of free IAA and cytokinins in potato-tubers during dormancy and sprouting. Biologia Plantarum 35(3): 387–391.

    Article  CAS  Google Scholar 

  • Suttle, J.C. 1995. Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potato tubers. Physiologia Plantarum 95: 233–240.

    Article  CAS  Google Scholar 

  • Suttle, J.C. 1998. Involvement of ethylene in potato microtuber dormancy. Plant Physiology 118: 843–848.

    Article  PubMed  CAS  Google Scholar 

  • Suttle, J.C. 2004. Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: A critical assessment. Journal of Plant Physiology 161: 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Suttle, J.C. 2009. Ethylene is not involved in hormone and bromoethane induced dormancy break in Russet Burbank minitubers. American Journal of Potato Research 86: 278–285.

    Article  CAS  Google Scholar 

  • Suttle, J.C., and J.F. Hultstrand. 1994. Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiology 105: 891–896.

    PubMed  CAS  Google Scholar 

  • Wills, R.B.H., M.A. Warton, and J.K. Kim. 2004. Effect of low levels of ethylene on sprouting of potatoes in storage. HortScience 39(1): 136–137.

    CAS  Google Scholar 

  • Wiltshire, J.J.J., and A.H. Cobb. 1996. A review of the physiology of potato tuber dormancy. The Annals of Applied Biology 129(3): 553–569.

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by Colorado State Agricultural Experiment Station Project number 0691. We thank James zumBrunnen for statistical advice, and Ann E. McSay and Kent P. Sather for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Külen, O., Stushnoff, C., Davidson, R.D. et al. Gibberellic Acid and Ethephon Alter Potato Minituber Bud Dormancy and Improve Seed Tuber Yield. Am. J. Pot Res 88, 167–174 (2011). https://doi.org/10.1007/s12230-010-9178-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-010-9178-8

Keywords

Navigation