Skip to main content
Log in

Is dormancy breaking of potato tubers the reverse of tuber initiation?

  • Full Papers
  • Published:
Potato Research Aims and scope Submit manuscript

Summary

Tuber formation is a well orchestrated physiological event that involves many metabolic changes. Dormancy gradually develops in potato tubers from the moment cell division in the stolon tip has stopped and the tuber starts to develop. Dormancy breakage may be the reverse of dormancy initiation suggesting that there may be similarities between tuber induction and dormancy development.

Based on a literature review it is concluded that, when comparing tuber induction and the breaking of dormancy, hormonal activities are only partly reversed, whereas carbohydrates and enzyme activities might be reversed.

For more definite conclusions more research should be done to assess precisely the moment of dormancy breaking. Moreover, measurements on events associated with tuber induction and dormancy breaking should be carried out using the same techniques and the same material.

Molecular genetic analyses may provide well-defined markers for the timing of breaking of dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appeldoorn, N.J.G., S.M. de Bruijn, E.A.M. Koot-Gronsveld, R.G.F. Visser, D. Vreugdenhil & L.H.W. van der Plas, 1997. Developmental changes of enzymes involved in the conversion of sucrose to hexose-phosphate during early tuberisation of potato.Planta 202: 220–226.

    Article  CAS  Google Scholar 

  • Appeldoorn, N.J.G., S.M. de Bruijn, E.A.M. Koot-Gronsveld, R.G.F. Visser, D. Vreugdenhil & L.H.W. van der Plas, 1999. Developmental changes in enzymes involved in the conversion of hexose-phosphate and its subsequent metabolites during early tuberisation of potato.Plant, Cell and Environment 22: 1085–1096.

    Article  CAS  Google Scholar 

  • Bailey, K.M., I.D.J. Phillips & D. Pitt, 1978. The role of buds and gibberellin in dormancy and the mobilization of reserve materials in potato tubers.Annals of Botany 42: 649–657.

    CAS  Google Scholar 

  • Bialek, K., M. Bielinska-Czarnecka, P. Gaskin & J. MacMillan, 1973. The levels of abscisic acid in inhibitor-β complex from potato tubers.Bulletin de l'Academie Polonaise des Sciences 21: 781–784.

    CAS  Google Scholar 

  • Bialek, K. & M. Bielinska-Czarnecka, 1975. Gibberellin-like substances in potato tubers during their growth and dormancy.Bulletin de l'Academie Polonaise des Sciences 23: 213–218.

    CAS  Google Scholar 

  • Boo, L., 1961. The effect of gibberellic acid on the inhibitor β complex in resting potato.Physiologia Plantarum 14: 676–681.

    CAS  Google Scholar 

  • Bruinsma, J., 1962. A survey of recent Japanese research on dormancy of potato tubers.European Potato Journal 8: 195–203.

    Google Scholar 

  • Bruinsma, J., 1967. Termination of dormancy with gibberellic acid.Mededelingen Rijksfaculteit Landbouwwetenschappen Gent 32: 1013–1020.

    Google Scholar 

  • Burton, W.G., 1978. The physics and physiology of storage. In: P.M. Harris (Ed.), The potato crop. Chapman and Hall, London, pp. 545–606.

    Google Scholar 

  • Catchpole, A.H. & J. Hillman, 1969. Effect of ethylene on tuber initiation inSolanum tuberosum.Nature, 223: 1387.

    CAS  Google Scholar 

  • Clegg, M.D. & L. Rappaport, 1970. Regulation of bud rest in tubers of potato,Solanum tuberosum L. VI Biochemical changes induced in excised potato buds by gibberellic acid.Plant Physiology 45: 8–13.

    CAS  Google Scholar 

  • Cohn, M.A., 1996. Chemical mechanisms of breaking seed dormancy.Seed Science Research 6: 95–99.

    CAS  Google Scholar 

  • Davies, H.V. & H.A. Ross, 1987. Hydrolytic and phosphorolytic enzyme activity and reserve mobilisation in sprouting tubers of potato (Solanum tuberosum L.).Journal of Plant Physiology 126: 387–396.

    CAS  Google Scholar 

  • Davies, H.V. & R. Viola, 1988. The effect of gibberellic acid on starch breakdown in sprouting tubers ofSolanum tuberosum L.Annals of Botany 61: 689–693.

    CAS  Google Scholar 

  • Dimalla, G.G. & J. van Staden, 1977. Apical dominance and the utilization of carbohydrates during storage of potato tubers.Annals of Botany 41: 387–391.

    CAS  Google Scholar 

  • Duda, G.Y., T.A. Palladina & A.S. Okanenko, 1971. Theory and practice of arousal of freshly harvested potato tubers for sowing.Fiziologiya Rastenii 18: 1046–1053.

    CAS  Google Scholar 

  • Emilsson, B., 1949. Studies on the rest period and dormant period in the potato tuber.Acta Agriculturae Suecana 3: 189–284.

    CAS  Google Scholar 

  • Engelbrecht, L. & M. Bielinska-Czarnecka, 1972. Increase of cytokinin activity in potato tubers near the end of dormancy.Biochemie und Physiologie der Pflanzen 163: 499–504.

    CAS  Google Scholar 

  • Es, A. van & K.J. Hartmans, 1987a. Structure and chemical composition of the potato. In: A. Rastovski, A. van Es et al. (Eds), Storage of potatoes. Pudoc, Wageningen, The Netherlands, pp. 15–78.

    Google Scholar 

  • Es, A. van & K.J. Hartmans, 1987b. Dormancy, sprouting and sprout inhibition. In: A. Rastovski, A. van Es et al. (Eds), Storage of potatoes. Pudoc, Wageningen, The Netherlands, pp. 114–140.

    Google Scholar 

  • Ewing, E.E. & P.C. Struik, 1992. Tuber formation in potato: induction, initiation, and growth.Horticultural Reviews 14: 89–198.

    Google Scholar 

  • Garcia-Torres, L. & C. Gomez-Campo, 1973.In vitro tuberization of potato sprouts as affected by ethrel and gibberellic acid.Potato Research, 16: 73–79.

    CAS  Google Scholar 

  • Guzman, V.L., 1963. Activity of gibberellin levels for breaking dormancyof Solanum tuberosum L.Florida Agricultural Experiment Stations Journal 1750: 199–204.

    Google Scholar 

  • Hammes, P.S. & P.C. Nell, 1975. Control mechanism in the tuberization process.Potato Research, 18: 262–272.

    CAS  Google Scholar 

  • Hawker, J.S., H. Marschner & A. Kraus, 1979. Starch synthesis in developing potato tubers.Physiologia Plantarum 46: 25–30.

    CAS  Google Scholar 

  • Hemberg, T., 1949. Significance of growth inhibiting substances and auxins for the rest period of the potato tuber.Physiologia Plantarum 1: 24–36.

    Google Scholar 

  • Hemberg, T., 1967. The action of endogenous growth-inhibiting substances and gibberellins on the rest-period of the potato tuber.Wissenschaftliche Zeitschrift der Universitaet Rostock, Math.-naturw. Reihe 16: 661–666.

    Google Scholar 

  • Hemberg, T., 1970. The action of some cytokinins on the rest period and the content of acid growth-inhibiting substances in potato.Physiologia Plantarum 23: 850–858.

    CAS  Google Scholar 

  • Hemberg, T., 1985. Potato rest. In: P.H. Li (Ed.), Potato Physiology. Academic Press Inc., Orlando, Florida, pp. 353–389.

    Google Scholar 

  • Hendriks, T., D. Vreugdenhil & W.J. Stiekema, 1991. Patatin and four serine proteinase inhibitor genes are differentially expressed during potato tuber development.Plant Molecular Biology 17: 385–394.

    Article  CAS  PubMed  Google Scholar 

  • Ittersum, M.K. van & P.C. Struik, 1992. Relation between stolon and tuber characteristics and the duration of tuber dormancy in potato.Netherlands Journal of Agricultural Science 40: 159–172.

    Google Scholar 

  • Kato, T. & H. Ito, 1961. Interrelations between gibberellin and dormancy of potato tuber.Tohuku Journal of Agricultural Research 12: 1–8.

    Google Scholar 

  • Koda, Y., 1982a. Changes in the levels of butanol-and water-soluble cytokinins during the life cycle of potato tubers.Plant & Cell Physiology 23: 843–849.

    CAS  Google Scholar 

  • Koda, Y., 1982b. Effects of storage temperature and wounding on cytokinin levels in potato tubers.Plant & Cell Physiology 23: 851–857.

    CAS  Google Scholar 

  • Koda, Y., 1988. Factors controlling potato tuberization.Memoirs of the Faculty of Agriculture-Hokkaido University 16: 82–128.

    Google Scholar 

  • Koda, Y. & Y. Okazawa, 1983a. Influences of environmental, hormonal and nutritional factors on potato tuberizationin vitro.Japanese Journal of Crop Science 52: 582–591.

    Google Scholar 

  • Koda, Y. & Y. Okazawa, 1983b. Characteristic changes in the levels of endogenous plant hormones in relation to the onset of potato tuberization.Japanese Journal of Crop Science 52: 592–597.

    Google Scholar 

  • Koda, Y. & Y. Okazawa, 1988. Detection of potato tuber-inducing activity in potato leaves and old tubers.Plant Cell Physiology 29: 969–974.

    CAS  Google Scholar 

  • Koda, Y., E.A. Omer, T. Yoshihara, H. Shibata, S. Sakamura & Y. Okazawa, 1988a. Isolation of a specific potato tuber-inducing substance from potato leaves.Plant Cell Physiology 29: 1047–1051.

    CAS  Google Scholar 

  • Koda, Y., T. Yoshihara, S. Sakamura & Y. Kikuta, 1988b. Comparisons of biological activities of the potato tuber-inducing substance, jasmonic acid and its derivatives. Abstract (404) of the 13th International Conference on Plant Growth Substances, Calgary, Canada.

  • Kumar, D. & P.F. Wareing, 1974. Studies on tuberization ofSolanum andigena. II. Growth hormones and tuberization.New Phytologist 73: 833–840.

    CAS  Google Scholar 

  • Lugt, C., K.B.A. Bodlaender & G. Goodijk, 1964. Observations on the induction of second-growth in potato tubers.European Potato Journal 4: 219–227.

    Google Scholar 

  • Machackova, I., T.N. Konstantinova, L.I. Sergeeva, V.N. Lozhnikova, S.A. Golyanovskaya, N.D. Dudko, J. Eder & N.P. Aksenova, 1998. Photoperiodic control of growth, development and phytohormone balance inSolanum tuberosum.Physiologia Plantarum 102: 272–278.

    Article  CAS  Google Scholar 

  • Mares, D.J., H. Marschner & A. Krauss, 1981. Effect of gibberellic acid on growth and carbohydrate metabolism of developing tubers of potato (Solanum tuberosum).Physiologia Plantarum 52: 267–274.

    CAS  Google Scholar 

  • Mauk, C.S. & A.R. Langille, 1978. Physiology of tuberization inSolanum tuberosum L.Plant Physiology 62: 438–442.

    CAS  Google Scholar 

  • McGrady, J.J., P.C. Struik & E.E. Ewing, 1986. Effects of exogenous applications of cytokinin on the development of potato (Solanum tuberosum L.) cuttings.Potato Research 29: 191–205.

    CAS  Google Scholar 

  • Melis, R.J.M. & J. van Staden, 1984. Tuberization and hormones.Zeitschrift fuer Pflanzenphysiologie 113: 271–283.

    CAS  Google Scholar 

  • Minato, T. & Y. Okazawa, 1978. Effect of ethylene treatment on auxin metabolism of potato tubers.Journal of the Faculty of Agriculture Hakkaido University 58: 535–547.

    CAS  Google Scholar 

  • Mingo-Castel, A.M., F.B. Negm & O.E. Smith, 1974. Effect of carbon dioxide and ethylene on tuberization of isolated potato stolons culturedin vitro.Plant Physiology 53: 798–801.

    CAS  Google Scholar 

  • Mingo-Castel, A.M., O.E. Smith & J. Kumamoto, 1976. Studies on the carbon dioxide promotion and ethylene inhibition of tuberization in potato explants culturedin vitro.Plant Physiology 57: 480–485.

    CAS  Google Scholar 

  • Obata-Sasamoto, H. & H. Suzuki, 1979. Activities of enzymes relating to starch synthesis and endogenous levels of growth regulators in potato stolon tips during tuberization.Physiologia Plantarum 45: 320–324.

    CAS  Google Scholar 

  • Obhlidalova, L., K. Slaby & J. Sebanek, 1979. Changes in the content of native cytokinins and gibberellins during the storage of potato tubers, as related to their polarity.Rostlinna Vyroba 25: 229–233.

    CAS  Google Scholar 

  • Palmer, C.E. & W.G. Barker, 1972. Changes in enzyme activity during elongation and tuberization of stolons ofSolanum tuberosum L. cultured in vitro.Plant & Cell Physiology 13: 681–688.

    CAS  Google Scholar 

  • Palmer, C.E. & W.G. Barker, 1973. Influence of ethylene and kinetin on tuberization and enzyme activity inSolanum tuberosum L. stolons culturedin vitro.Annals of Botany 37: 85–93.

    CAS  Google Scholar 

  • Palmer, C.E. & O.E. Smith, 1969. Cytokinins and tuber initiation in the potatoSolanum tuberosum L.Nature 221: 279–280.

    CAS  Google Scholar 

  • Plas, L.H.W. van der, 1987. Potato tuber storage: biochemical and physiological changes. In: Y.P.S. Bajaj (Ed.), Biotechnology in agriculture and forestry, Vol. 3: Potato. Springer-Verlag, Berlin, pp. 109–135.

    Google Scholar 

  • Porter, H.K., 1953. Starch synthesis and degradation in vivo. In: Biological transformations of starch and cellulose. Symposium of the Biochemical Society 11: 27–41.

    Google Scholar 

  • Railton, I.D. & P.F. Wareing, 1973. Effects of daylength on endogenous gibberellins in leaves ofSolanum andigena.Physiologia Plantarum 28: 88–94.

    CAS  Google Scholar 

  • Rappaport, L., L.F. Lippert & H. Timm, 1957. Sprouting, plant growth, and tuber production as affected by chemical treatment of white potato seed pieces. I. Breaking the rest period with gibberellic acid.American Potato Journal 34: 254–260.

    CAS  Google Scholar 

  • Rappaport, L., S. Blumenthal-Goldschmidt, M.D. Clegg & O.E. Smith, 1965. Regulation of bud rest in tubers of potatoSolanum tuberosum L. I. Effect of growth substances on excised potato buds.Plant & Cell Physiology 6: 587–599.

    CAS  Google Scholar 

  • Rappaport, L. & M. Sachs, 1967. Wound-induced gibberellins.Nature 214: 1149–1150.

    CAS  Google Scholar 

  • Renz, A., L. Merlo & M. Stitt, 1993. Partial purification from potato tubers of three fructokinases and three hexokinases which show differing organ and developmental specificity.Planta 190: 156–165.

    CAS  Google Scholar 

  • Ross, H.A. & H.V. Davies, 1992. Sucrose metabolism in tubers of potato (Solanum tuberosum L.)Plant Physiology 98: 287–293.

    CAS  Google Scholar 

  • Ross, H.A., H.V. Davies, L.R. Burch, R. Viola & D. McRae, 1994. Developmental changes in carbohydrate content and sucrose degrading enzymes in tuberising stolons of potato (Solanum tuberosum).Physiologia Plantarum 90: 748–756.

    Article  CAS  Google Scholar 

  • Rylski, I., L. Rappaport & H.K. Pratt, 1974. Dual effects of ethylene on potato dormancy and sprout growth.Plant Physiology 53: 658–662.

    CAS  Google Scholar 

  • Sattelmacher, B. & H. Marschner, 1978. Cytokinin activity in stolons and tubers ofSolanum tuberosum during the period of tuberization.Physiologia Plantarum 44: 69–72.

    CAS  Google Scholar 

  • Simko, I., S. McMurry, H.-M. Yang, A. Manschot, P.J. Davies & E.E. Ewing, 1997. Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content.Plant Physiology 115: 1453–1459.

    CAS  PubMed  Google Scholar 

  • Smith, O.E. & L. Rappaport, 1961. Endogenous gibberellins in resting and sprouting potato tubers.Advances in Chemistry 28: 42–48.

    Google Scholar 

  • Stitt, M., C. Cseke & B. Buchanan, 1986. Ethylene-induced increase in fructose-2,6-biphosphate in plant storage tissues.Plant Physiology 80: 246–248.

    CAS  Google Scholar 

  • Suttle, J.C., 1995. Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potato tubers.Physiologia Plantarum 95: 233–240.

    Article  CAS  Google Scholar 

  • Suttle, J.C., 1998a. Involvement of ethylene in potato microtuber dormancy.Plant Physiology 118: 843–848.

    Article  CAS  PubMed  Google Scholar 

  • Suttle, J.C., 1998b. Postharvest changes in endogenous cytokinins and cytokinin efficacy in potato tubers in relation to bud endodormancy.Physiologia Plantarum 103: 59–69.

    Article  CAS  Google Scholar 

  • Suttle, J.C. & G.M. Banowetz, 2000. Changes incis-zeatin andcis-zeatin riboside levels and biological activity during potato tuber dormancy.Physiologia Plantarum 109: 68–74.

    Article  CAS  Google Scholar 

  • Suttle, J.C. & J.F. Hultstrand, 1994. Role of endogenous abscisic acid in potato microtuber dormancy.Plant Physiology 105: 891–896.

    CAS  PubMed  Google Scholar 

  • Thomas, T.H., 1981. Hormonal control of dormancy in relation to post-harvest horticulture.Annals of Applied Biology 98: 531–538.

    CAS  Google Scholar 

  • Timm, H., D.L. Hughes & M.L. Weaver, 1986. Effect of exposure time of ethylene on potato sprout development.American Potato Journal 63: 655–664.

    Google Scholar 

  • Turnbull, C.G.N. & D.E. Hanke, 1985a. The control of bud dormancy in potato tubers.Planta 165: 359–365.

    CAS  Google Scholar 

  • Turnbull, C.G.N. & D.E. Hanke, 1985b. The control of bud dormancy in potato tubers. Measurement of the seasonal pattern of changing concentrations of zeatin-cytokinins.Planta 165: 366–376.

    CAS  Google Scholar 

  • Visser, R.G.F., D. Vreugdenhil, T. Hendriks & E. Jacobsen, 1994. Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum tuberosum).Physiologia Plantarum 90: 285–292.

    Article  CAS  Google Scholar 

  • Vreugdenhil, D. & H. Helder, 1992. Hormonal and metabolic control of tuber formation. In: C.M. Karssen, L.C. van Loon and D. Vreugdenhil, (Eds), Progress in Plant Growth Regulation. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 393–400.

    Google Scholar 

  • Vreugdenhil, D. & L.I. Sergeeva, 1999. Gibberellins and tuberization in potato.Potato Research 42: 471–481.

    CAS  Google Scholar 

  • Vreugdenhil, D. & P.C. Struik, 1989. An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum).Physiologia Plantarum 75: 525–531.

    CAS  Google Scholar 

  • Vreugdenhil, D., Y. Boogaard, R.G.F. Visser & S.M. de Bruijn, 1998. Comparison of tuber and shoot formation fromin vitro cultured potato explants.Plant Cell, Tissue & Organ Culture 53: 197–204.

    CAS  Google Scholar 

  • Wareing, P.F. & A.M.V. Jennings, 1980. The hormonal control of tuberisation in potato. In: F. Skoog (Ed.), Plant Growth Substances. Springer-Verlag, Berlin, pp. 293–300.

    Google Scholar 

  • Wellensiek, S.J., 1929. The physiology of tuber-formation inSolanum tuberosum L.Mededeelingen Landbouwhoogeschool, Wageningen, The Netherlands 33: 1–42.

    Google Scholar 

  • Werner, H.O., 1934. The effect of a controlled nitrogen supply with different temperatures and photoperiods upon the development of the potato plant.Nebraska Agricultural Experiment Station Bulletin 75: 1–132.

    Google Scholar 

  • Woolley, D.J. & P.F. Wareing, 1972. The interaction between growth promoters in apical dominance. I. Hormonal interaction, movement and metabolism of a cytokinin in rootless cuttings.New Phytologist 71: 781–793.

    CAS  Google Scholar 

  • Xu, X., D. Vreugdenhil & A.A.M. van Lammeren, 1998a. Cell division and cell enlargement during potato tuber formation.Journal of Experimental Botany 49: 573–582.

    Article  CAS  Google Scholar 

  • Xu, X., A.A.M. van Lammeren, E. Vermeer & D. Vreugdenhil, 1998b. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro.Plant Physiology 117: 575–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claassens, M.M.J., Vreugdenhil, D. Is dormancy breaking of potato tubers the reverse of tuber initiation?. Potato Res 43, 347–369 (2000). https://doi.org/10.1007/BF02360540

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02360540

Additional keywords

Navigation