Skip to main content
Log in

Breeding for Phytonutrient Enhancement of Potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The potato is a vegetable that develops underground as a stem. It is a propagule in the sense that the potato itself is used as seed for the following crop. As a food it is a rich source of nutrients. All potatoes have carotenoids in the flesh which are xanthophylls. Of greatest interest are lutein and zeaxanthin, components of the human retina that must be obtained from foods for proper eye health. Potatoes grown outside the center of origin in the Andes of South America may contain from 50 to 350 micrograms zeaxanthin equivalents per 100 g FW. Potatoes developed by farmers in the Andes, especially the Papa Amarilla class of cultivars, may contain as much as 2,000 μg per 100 g FW. Xanthophylls are fat soluble, have half-lives of several days in the human body, and are antioxidants that associate with membranes in the cell. Anthocyanins are radically different compounds conferring red to purple coloration to skin and flesh of potato. Potatoes with color of this type range from 1.5 mg cyanidin equivalents per 100 g FW, in colored skin but non-colored flesh types and up to 40 mg in colored skin, solidly colored flesh types. Potent antioxidants, anthocyanins are water soluble and have a half-life of several hours in the body. Some of the anthocyanins are strong anti-inflammatory agents. Potato is recognized as containing minerals, though never mentioned as a particularly rich source. A survey of advanced breeding lines and varieties at different growing locations indicates that different genotypes display a large range of iron content. Iron is the most problematic mineral from a dietary standpoint. Absorption from food is hindered by phytic acid and polyphenols, which are abundant in small grains and food legumes, while present in minute amounts in potato. The difficulty in absorption is countered further in the presence of vitamin C, which aids iron absorption. Potato is a substantial source of vitamin C and theoretically could be a principal component of a food matrix that provides highly absorbable iron.

Resumen

La papa es una hortaliza que se desarrolla como tallo bajo tierra. Es un propágulo en el sentido de que la papa en sí es usada como semilla para el siguiente cultivo. Como alimento es una rica fuente de nutrientes. Todas las papas contienen carotenoides en la pulpa los cuales son xantófilas. Los de mayor interés son la luteína y la zeaxantina, componentes de la retina humana y que se deben obtener de los alimentos para la salud apropiada de los ojos. Las papas que se cultivan fuera de su centro de origen en los Andes de Sudamérica pueden contener 50 a 350 microgramos de equivalentes de zeaxantina por 100 gramos de peso fresco (PF). Las papas desarrolladas por los agricultores en los Andes, especialmente del tipo Papa Amarilla pueden contener hasta 2000 microgramos por 100 gramos de PF. Las xantofilas son lipo solubles, tienen una vida media de varios días en el cuerpo humano, y son antioxidantes que se asocian con las membranas en la célula. Las antocianinas son compuestos radicalmente diferentes que confieren una coloración roja a la cáscara y pulpa de papa. Papas con este tipo de color contienen 1.5 mg de equivalentes de cianidina por 100 g de PF, en los tipos de cáscara coloreada pero pulpa no coloreada y hasta 40 mg en los tipos de cáscara coloreada, pulpa totalmente de color. Las antocianinas, potentes antioxidantes, son solubles en agua y tienen una vida media en el cuerpo, de varias horas. Algunas antocianinas son potentes agentes anti-inflamatorios. La papa es reconocida como fuente rica en minerales, aunque nunca es mencionada como fuente particularmente rica. Una inspección de las líneas avanzadas de mejoramiento y variedades de distintas localidades de cultivo indica que diferentes genotipos muestran un amplio contenido de hierro. El hierro es el mineral más problemático desde el punto de vista dietético. La absorción de hierro a partir del alimento es obstaculizada por el ácido fítico y polifenoles, los cuales están presentes en abundancia en granos menudos y leguminosas comestibles, mientras que en la papa hay pequeñísimas cantidades. La dificultad de absorción es contrarrestada en presencia de vitamina C, la cual ayuda la absorción de hierro. La papa es una fuente sustancial de vitamina C y teóricamente puede ser el componente principal de una matriz alimentaria que proporcione hierro altamente absorbible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, M. del Rosario Herrera, L. Hoffmann, J.-F. Hausman, Y. Larondelle, and D. Evers. 2007. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry 55: 366–378.

    Article  PubMed  CAS  Google Scholar 

  • Bonierbale, M.W., R.L. Plaisted, and S.D. Tanksley. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095–1103.

    PubMed  Google Scholar 

  • Brown, C.R. 2005. Antioxidants in potato. American Journal of Potato Research 62: 163–172.

    Article  Google Scholar 

  • Brown, C.R., C.G. Edwards, C-P. Yang, and B.B. Dean. 1993. Orange flesh trait in potato: Inheritance and carotenoid content. Journal of the American Society for Horticultural Science 118: 145–150.

    CAS  Google Scholar 

  • Brown, C.R., R. Wrolstad, R. Durst, C-P. Yang, and B. Clevidence. 2003. Breeding studies in potatoes containing high concentrations of anthocyanins. American Journal of Potato Research 80: 241–250.

    Article  CAS  Google Scholar 

  • Brown, C.R., D. Culley, C-P. Yang, R. Durst, and R. Wrolstad. 2005. Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines. Journal of the American Society for Horticultural Science 130: 174–180.

    CAS  Google Scholar 

  • Brown C.R., T.S. Kim, Z. Ganga, K. Haynes, D. De Jong, M. Jahn, I. Paran, and W. De Jong. 2006. Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. American Journal of Potato Research 83: 365–372.

    CAS  Google Scholar 

  • Brown C.R., D. Culley, M. Bonierbale, and W. Amorós. 2007. Anthocyanin, carotenoid content, and antioxidant values in native South American Potato Cultivars. HortScience 42: 1733–1736.

    Google Scholar 

  • Campos, D., G. Noratto, R. Chirinos, C. Arbizu, W. Roca, and L. Cisneros-Zevallos. 2006. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: Native potato (Solanum sp.), mashua (Tropeaolum tuberosum Ruiz & Pavon), oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture 86: 1481–1488.

    Article  CAS  Google Scholar 

  • Cao G., H.M.M. Alessio, and R.G. Cutler. 1993. Oxygen–radical absorbance capacity for antioxidants. Free Radical Biololgy & Medicine 14: 303–311.

    Article  CAS  Google Scholar 

  • Cao, G., C.P. Verdon, A.H.B. Wu, H. Wang, and R.L. Prior. 1995. Automated oxygen radical absorbance capacity assay using the COBAS FARA II. Clinical Chemistry 41: 1738–1744.

    PubMed  CAS  Google Scholar 

  • Cao, G., S.L. Booth, J.S. Sadowski, and R.L. Prior. 1998a. Increase in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. American Journal of Clinical Nutrition 68: 1081–1087.

    PubMed  CAS  Google Scholar 

  • Cao, G., B. Shukitt-Hale, P.C. Bickford, J.A. Joseph, J. McEwen, and R.L. Prior. 1999. Hyperoxia-induced changes in antioxidant capacity and the effect of dietary antioxidants. Journal of Applied Physiology 86: 1817–1822.

    Article  PubMed  CAS  Google Scholar 

  • Dale, M.F.B., D.W. Griffiths, and D.T. Todd. 2003. Effects of genotype, environment, and postharvest storage on the total ascorbate content of potato (Solanum tuberosum) tubers. Journal of Agricultural and Food Chemistry 51: 244–248.

    Article  PubMed  CAS  Google Scholar 

  • Davidsson, L., T. Walczyk, A. Morris, and R.F. Hurrel. 1998. Influence of ascorbic acid on iron absorption from an iron-fortified, chocolate-flavored milk drink in Jamaican children. American Journal of Clinical Nutrition 67: 873–877.

    PubMed  CAS  Google Scholar 

  • De Jong, H. 1991. Inheritance of anthocyanin pigmentation in the cultivated potato: A critical review. American Potato Journal 68: 585–593.

    Article  Google Scholar 

  • Durst, R.W., and R. Wrolstad. 2001. Separation and characterization of anthocyanins by HPLC. In Current protocols in food analytical chemistry, ed. R.E. Wrolstad, 1.3.1–1.3.13. NY: Wiley.

    Google Scholar 

  • Gebhardt, C., E. Ritter, T. Debener, U. Schnachtschabel, B. Walkemeier, H. Uhrig, and F. Salamini. 1989. RFLP analysis and linkage mapping in Solanum tuberosum. Theoretical and Applied Genetics 78: 65–75.

    Article  Google Scholar 

  • Giusti, M.M. and R.E. Wrolstad. 2001. Anthocyanins: characterization and measurement with UV–visible spectroscopy. In: Current protocols in food analytical chemistry, ed. R.E. Wrolstad, F1.2.1–1.2.13. NY: Wiley.

  • Gordon, D.L., and D.L. Katz. 2005. Stealth health: How to sneak age-defying, disease-fighting habits into your life without really trying. New York: Readers Digest Association, 461 pp.

  • Hawkes, J.G. 1990. The potato: Evolution, biodiversity and genetic resources. London: Bellhaven.

    Google Scholar 

  • Hertog, M.G.L., E. Feskens, P. Hollman, M. Katan, and D. Kromhout. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet 342: 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  • Huang, D.B., M. Ou, J.A. Hampsch-Woodill, J.A. Flanagan, and E.K. Deemer. 2002. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. Journal of Agricultural and Food Chemistry 50: 1815–1821.

    Article  PubMed  CAS  Google Scholar 

  • Iwanzik, W., M. Tevini, R. Stute, and R. Hilbert. 1983. Carotinoidgehalt und Zusammensetzung verschiedener deutscher Kartoffelsorten und deren Bedeutung fur die Fleischfarbe der Knolle. Potato Research 26: 149–162.

    Article  CAS  Google Scholar 

  • Knekt, P., R. Jarvinen, A. Reunanen, and J. Maatela. 1996. Flavonoid intake and coronary mortality in Finland: a cohort study. British Medical Journal 312: 478–481.

    PubMed  CAS  Google Scholar 

  • Kruezer, H. 2001. Incorporating lutein into foods and beverages. Supplement to Food Product Design 11(4) 5 pages.

  • Love, S.L., T. Salaiz, B. Shafii, W.J. Price, A.R. Mosley, and R.E. Thornton. 2003. Ascorbic acid concentration and stability in North American potato germplasm. Acta Horticulturae 619: 87–93.

    CAS  Google Scholar 

  • Lu, W.H., K. Haynes, E. Wiley, and B. Clevidence. 2001. Carotenoid content and color in diploid potatoes. Journal of the American Society for Horticultural Science 126: 722–726.

    CAS  Google Scholar 

  • Mazza, G., C.D. Kay, T. Cottrell, and B.J. Holub. 2002. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. Journal of Agricultural and Food Chemistry 50: 7731–7737.

    Article  PubMed  CAS  Google Scholar 

  • Nestel, P., H.E. Bouis, J.V. Meenakshi, and W. Pfeiffer. 2006. Biofortification of staple food crops. Journal of Nutrition 136: 1064–1067.

    PubMed  CAS  Google Scholar 

  • Nesterenko, S., and K.C. Sink. 2003. Carotenoid profiles of potato breeding lines and selected cultivars. HortScience 38: 1173–1177.

    CAS  Google Scholar 

  • Olmedilla, B., F. Granado, I. Blanco, M. Vaquero, and C. Cajigal. 2001. Lutein in patients with cataracts and age-related macular degeneration: a long-term supplementation study. Journal of the Science of Food and Agriculture 81: 904–909.

    Article  CAS  Google Scholar 

  • Reddy, M.B., R.F. Hurrell, and J.D. Cook. 2000. Estimation of nonheme-iron bioavailability from meal composition. American Journal of Clinical Nutrition 71: 937–943.

    PubMed  CAS  Google Scholar 

  • Rein, D., J. Saaddine, J. Wittenborn, K. Wirth, T. Hoerger, K. Narayan, T. Clemons, and S. Sorensen. 2007. Cost-effectiveness of vitamin therapy for age-related macular degeneration. Ophthalmology 114: 1319–1326.

    Article  PubMed  Google Scholar 

  • Spooner, D.M., and W.L.A. Hetterscheid. 2006. Origins, evolution and group classification of cultivated potatoes. In Darwin’s harvest: New approaches to the origins, evolution, and conservation of crops, eds. T.J. Motley, N. Zerega, and H. Cross, 285–307. New York: Columbia University Press.

  • United Nations. 1997. Vitamin A supplements: A guide to their use in the treatment and prevention of vitamin A deficiency and xerophthalmia—Second edition. Geneva: World Health Organization.

  • van Breemen, R.B. 2001. Carotenoids. In Current protocols in food analytical chemistry, ed. R.E. Wrolstad, F2.1.1–F2.4.6. NY: Wiley.

  • Van Eck J., B. Conlin, D. Garvin, H. Mason, D.A. Navarre, and C.R. Brown. 2007. Enhanced beta-carotene content in potato via RNAi silencing of the beta-carotene hydroxylase gene. American Journal of Potato Research 84: 331–342.

    CAS  Google Scholar 

  • Wang, H., M.G. Nair, G.M. Strasburg, Y.C. Chang, A.M. Booren, J.I. Gray, and D.L. DeWitt. 1999. Antioxidant and anti-inflammatory activities of anthocyanins and their aglycon, cyanidin, from tartcherries. Journal of Natural Products 62: 294–296.

    Article  PubMed  CAS  Google Scholar 

  • Woolfe, J.A. 1987. The potato in the human diet. Cambridge, UK: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C.R. Breeding for Phytonutrient Enhancement of Potato. Am. J. Pot Res 85, 298–307 (2008). https://doi.org/10.1007/s12230-008-9028-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-008-9028-0

Keywords

Navigation