Skip to main content

Potato Carotenoids

  • Chapter
  • First Online:
Potato

Abstract

Potato (Solanum tuberosum L.) is the world’s third most important crop in terms of human consumption following wheat and rice. It has been used as a primary nutritional source in many diets and for preparation of a variety of processed products in all countries of the world whether developing or developed. Potato tubers are considered as a rich source of bioactive compounds, which are highly desirable in healthy human diet. Although potato is a nutrient rich food, there is ample scope for improving its nutritional quality and making it more nutritious food. Among various phytonutrients, carotenoids are major lipophilic constituents contributing to total antioxidant activity of potato. Potato with improved carotenoid content and composition are essential to fulfil the carotenoid requirement of malnourished populations of many countries around the world, which is important to alleviate vitamin A deficiency and other health-related disorders. The objective of the chapter is to summarize various aspects related to potato tuber carotenoid, viz. health promoting properties of carotenoids and specially their contents and composition in different potato varieties affected by tuber flesh colour (purple-, yellow-, white- and red-fleshed) and the effect of various factors on total and individual carotenoid levels, such as genotype, breeding methodology, tuber development, effect of year, locality, storage, thermal processing—cooking, frying, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akyol H, Riciputi Y, Capanoglu E et al (2016) Phenolic compounds in the potato and its byproducts: an overview. Int J Mol Sci 17(6):835

    Article  PubMed Central  CAS  Google Scholar 

  • Al-Babili S, Hugueney P, Schledz M et al (2000) Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett 485(2-3):168–172

    Article  CAS  PubMed  Google Scholar 

  • Amah D, Alamu E, Adesokan M et al (2019) Variability of carotenoids in a Musa germplasm collection and implications for provitamin A biofortification. Food Chem: X 30(2):100024

    Google Scholar 

  • Andersson MS, Saltzman A, Virk PS, Pfeiffer WH (2017) Progress update: crop development of biofortified staple food crops under Harvest Plus. Afr J Food Agric Nutr Dev 17(2):11905–11935

    CAS  Google Scholar 

  • Andre C, Oufir M, Guignard C et al (2007) Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. J Agric Food Chem 55:10839–10849

    Article  CAS  PubMed  Google Scholar 

  • Bembem K, Sadana B (2013) Effect of cooking methods on the nutritional composition and antioxidant activity of potato tubers. Int J Food Nutr Sci 2(4):26–30

    Google Scholar 

  • Bhushan B, Thomas P (1990) Effects of gamma-irradiation and storage temperature on lipoxygenase activity and carotenoid disappearance in potato tubers (Solanum tuberosum L.). J Agric Food Chem 38(7):1586–1590

    Article  CAS  Google Scholar 

  • Bijttebier S, D’Hondt E, Noten B et al (2014) Automated analytical standard production with supercritical fluid chromatography for the quantification of bioactive C17-polyacetylenes: a case study on food processing waste. Food Chem 165:371–378

    Article  CAS  PubMed  Google Scholar 

  • Blessington T, Nzaramba MN, Scheuring DC et al (2010) Cooking methods and storage treatments of potato: effects on carotenoids, antioxidant activity, and phenolics. Am J Potato Res 87(6):479–491

    Article  CAS  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonierbale M, Grüneberg W, Amoros W et al (2009) Total and individual carotenoid profiles in Solanum phureja cultivated potatoes: II. Development and application of near-infrared reflectance spectroscopy (NIRS) calibrations for germplasm characterization. J Food Compos Anal 22(6):509–516

    Article  CAS  Google Scholar 

  • Bradshaw JE (2019) Improving the nutritional value of potatoes by conventional breeding and genetic modification. In: Quality breeding in field crops. Springer, Cham, pp 41–84

    Chapter  Google Scholar 

  • Breithaupt DE, Bamedi A (2002) Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): new insights into an ancient vegetable. J Agric Food Chem 50:7175–7181

    Article  CAS  PubMed  Google Scholar 

  • Brown CR (2005) Antioxidants in potato. Am J Potato Res 82:163–172

    Article  CAS  Google Scholar 

  • Brown CR, Edwards CG, Yang CP et al (1993) Orange flesh trait in potato: inheritance and carotenoid content. J Am Soc Hortic Sci 118(1):145–150

    Article  CAS  Google Scholar 

  • Brown CR, Culley D, Yang C et al (2005) Variation of anthocyanins and carotenoid contents and associated antioxidant values in potato breeding lines. J Am Soc Hortic Sci 130:174–180

    Article  CAS  Google Scholar 

  • Brown CR, Kim TS, Ganga Z et al (2006) Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am J Potato Res 83:365–372

    Article  CAS  Google Scholar 

  • Bub A, Möseneder J, Wenzel G et al (2008) Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes. Eur J Nutr 47:99–103

    Article  CAS  PubMed  Google Scholar 

  • Burgos G, Salas E, Amoros W et al (2009) Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I concentrations and relationships as determined by spectrophotometry and HPLC. J Food Compos Anal 22:503–508

    Article  CAS  Google Scholar 

  • Burgos G, Amoros W, Salas E et al (2012) Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chem 133(4):1131–1137

    Article  CAS  Google Scholar 

  • Burmeister A, Bondiek S, Apel L et al (2011) Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. J Food Compos Anal 24(6):865–872

    Article  CAS  Google Scholar 

  • Campbell R, Ducreux LJM, Morris WL et al (2010) The metabolic and developmental roles of carotenoid cleavage dioxygenase 4 from potato (Solanum tuberosum L). Plant Physiol 154:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell R, Pont SD, Morris JA et al (2014) Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Theor Appl Genet 127(9):1917–1933

    Article  CAS  PubMed  Google Scholar 

  • Campbell R, Morris WL, Mortimer CL et al (2015) Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. Plant Sci 234:27–37

    Article  CAS  PubMed  Google Scholar 

  • Cheng HM, Koutsidis G, Lodge JK et al (2019) Lycopene and tomato and risk of cardiovascular diseases: a systematic review and meta-analysis of epidemiological evidence. Crit Rev Food Sci Nutr 59(1):141–158

    Article  CAS  PubMed  Google Scholar 

  • Clevidence B, Haynes K, Rao D et al (2005) Effect of cooking method on xanthophyll content of yellow-fleshed potato. US Jpn Nat Resour Protein Panel 34:280–284

    Google Scholar 

  • Cunningham FX, Gantt E (2005) A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J 41:478–492

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol 49(1):557–583

    Article  CAS  Google Scholar 

  • Dachtler M, Glaser T, Kohler K, Albert K (2001) Combined HPLC− MS and HPLC− NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina. Anal Chem 73(3):667–674

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R et al (2007a) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2(4):e350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diretto G, Welsch R, Tavazza R et al (2007b) Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol 7(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ducreux LJ, Morris WL, Hedley PE et al (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 56:81–89

    CAS  PubMed  Google Scholar 

  • Dugo P, Herrero M, Giuffrida D et al (2008) Analysis of native carotenoid composition in orange juice using C30 columns in tandem. J Sep Sci 31:2151–2160

    Article  CAS  PubMed  Google Scholar 

  • Dutt S, Manjul AS, Chauhan M et al (2019) Biotechnology for nutritional and associated processing quality improvement in potato. In: Nutritional quality improvement in plants. Springer, Cham, pp 429–483

    Chapter  Google Scholar 

  • Eggersdorfer M, Wyss A (2018) Carotenoids in human nutrition and health. Arch Biochem Biophys 652:18–26

    Article  CAS  PubMed  Google Scholar 

  • Emenhiser C, Sander LC, Schwartz SJ (1995) Capability of a polymeric C30 stationary phase to resolve cis-trans carotenoid isomers in reversed-phase liquid chromatography. J Chromatogr A 707(2):205–216

    Article  CAS  Google Scholar 

  • Ezekiel R, Singh N, Sharma S et al (2013) Beneficial phytochemicals in potato—a review. Food Res Int 50(2):487–496

    Article  CAS  Google Scholar 

  • Fernandez-Orozco R, Gallardo-Guerrero L, Hoirnero-Méndez D (2013) Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophylls esterification. Food Chem 141:2864–2872

    Article  CAS  PubMed  Google Scholar 

  • Fogelman E, Oren-Shamir M, Hirschberg J et al (2019) Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids. Planta 249(4):1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43(3):228–265

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci 99(2):1092–1097

    Google Scholar 

  • Frohlich, Conrad, Schmid et al (2007) Isolation and structural elucidation of different geometrical isomers of lycopene. Int J Vitam Nutr Res 77(6):369–375

    Article  PubMed  CAS  Google Scholar 

  • Gann PH, Khachik F (2003) Tomatoes or lycopene versus prostate cancer: is evolution anti-reductionist? CancerSpectrum Knowl Environ 95:1563–1565

    CAS  Google Scholar 

  • Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57(14):3639–3645

    Article  CAS  PubMed  Google Scholar 

  • Griffiths DW, Dale MF, Morris WL et al (2007) Effects of season and postharvest storage on the carotenoid content of Solanum phureja potato tubers. J Agric Food Chem 55(2):379–385

    Article  CAS  PubMed  Google Scholar 

  • Grodstein F, Kang JH, Glynn RJ et al (2007) A randomized trial of beta carotene supplementation and cognitive function in men: the Physicians’ Health Study II. Arch Intern Med 167(20):2184–2190

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Sreelakshmi Y, Sharma R (2015) A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods 11(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamouz K, Pazderu K, Lachman J et al (2016) Effect of cultivar, flesh colour, locality and year on carotenoid content in potato tubers. Plant Soil Environ 62:86–91

    Article  CAS  Google Scholar 

  • Hart DJ, Scott KJ (1995) Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem 54(1):101–111

    Article  CAS  Google Scholar 

  • Hauptmann R, Eschenfeldt WH, English J, Inventors, BP Corporation North America Inc, assignee, et al (1997) Enhanced carotenoid accumulation in storage organs of genetically engineered plants. United States patent US 5,618,988

    Google Scholar 

  • Haynes KG (2010) Genotype-environment interactions for potato tuber carotenoid content. J Am Soc Hortic Sci 135(3):250–258

    Article  Google Scholar 

  • Haynes KG, Clevidence BA, Rao D et al (2011) Inheritance of carotenoid content in tetraploid x diploid potato crosses. J Am Soc Hortic Sci 136(4):265–272

    Article  Google Scholar 

  • Heinrich U, Gärtner C, Wiebusch M et al (2003) Supplementation with β-carotene or a similar amount of mixed carotenoids protects humans from UV-induced erythema. J Nutr 133(1):98–101

    Article  CAS  PubMed  Google Scholar 

  • Hejtmánková K, Kotíková Z, Hamouz K et al (2013) Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. J Food Compos Anal 32(1):20–27

    Article  CAS  Google Scholar 

  • Herbers K (2003) Vitamin production in transgenic plants. J Plant Physiol 160(7):821–829

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4(3):210–218

    Article  CAS  PubMed  Google Scholar 

  • Iwanzik W, Tevini M, Stute R, Hilbert R (1983) Carotinoidgehalt undzusammensetzung verschiedener deutscherKartoffelsorten und deren Bedeutung für die Fleischfarbe derKnolle. Potato Res 26:149–162

    Article  CAS  Google Scholar 

  • Johnson EJ, McDonald K, Caldarella SM et al (2008) Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr Neurosci 11:75–83

    Article  CAS  PubMed  Google Scholar 

  • Jonasson L, Wikby A, Olsson AG (2003) Low serum β-carotene reflects immune activation in patients with coronary artery disease. Nutr Metab Cardiovasc Dis 13(3):120–125

    Article  CAS  PubMed  Google Scholar 

  • Khachik F, Spangler CJ, Smith JC et al (1997) Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal Chem 69:1873–1881

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman B, Oortwijn M, uit de Willigen J et al (2010) From QTL to candidate gene: genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genomics 11:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knekt P, Heliövaara M, Rissanen A et al (1992) Serum antioxidant vitamins and risk of cataract. BMJ 305(6866):1392–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi A, Ohara-Takada A, Tsuda S et al (2008) Breeding of potato variety ‘Inca-no-hitomi’ with a very high carotenoid content. Breed Sci 58:77–82

    Article  Google Scholar 

  • Köpcke W, Krutmann J (2008) Protection from sunburn with β-carotene-a meta-analysis. Photochem Photobiol 84(2):284–288

    Article  PubMed  CAS  Google Scholar 

  • Kopec RE, Cooperstone JL, Cichon MJ et al (2012) Analysis methods of carotenoids. In: Analysis of antioxidant-rich phytochemicals. Wiley-Blackwell, Hoboken, pp 105–149

    Chapter  Google Scholar 

  • Kotikova Z, Hejtmankova A, Lachman J et al (2007) Effect of selected factors on total carotenoid content in potato tubers (Solanum tuberosum L.). Plant Soil Environ 53(8):355

    Article  CAS  Google Scholar 

  • Kotíková Z, Šulc M, Lachman J, Pivec V, Orsák M, Hamouz K (2016) Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes after thermal processing. Food Chem 197:992–1001

    Google Scholar 

  • Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23(1):171–201

    Article  CAS  PubMed  Google Scholar 

  • Lachman J, Hamouz K, Musilová J et al (2013) Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chem 138(2-3):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Lachman J, Hamouz K, Orsák M et al (2016) Carotenoids in potatoes–a short overview. Plant Soil Environ 62(10):474–481

    Article  CAS  Google Scholar 

  • LaFountain AM, Pacheco C, Prum RO et al (2013) Nuclear magnetic resonance analysis of carotenoids from the burgundy plumage of the Pompadour Cotinga (Xipholena punicea). Arch Biochem Biophys 539(2):133–141

    Article  CAS  PubMed  Google Scholar 

  • Li H, Deng Z, Wu T et al (2012) Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem 130:928–936

    Article  CAS  Google Scholar 

  • Lindgren LO, Stålberg KG, Höglund AS (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132(2):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindley MG (1998) The impact of food processing on antioxidants in vegetable oils, fruits and vegetables. Trends Food Sci Technol 9(8-9):336–340

    Article  CAS  Google Scholar 

  • Lu W, Haynes K, Wiley E et al (2001) Carotenoid content and color in diploid potatoes. J Am Soc Hortic Sci 126:722–726

    Article  CAS  Google Scholar 

  • Luterotti S, Kljak K (2010) Spectrophotometric estimation of total carotenoids in cereal grain products. Acta Chim Slov 57(4):781–787

    CAS  PubMed  Google Scholar 

  • Mares J (2016) Lutein and zeaxanthin isomers in eye health and disease. Annu Rev Nutr 36:571–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mares-Perlman JA, Brady WE, Klein R et al (1995) Serum antioxidants and age-related macular degeneration in a population-based case-control study. Arch Ophthalmol 113(12):1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Maurer MM, Mein JR, Chaudhuri SK et al (2014) An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops. Food Chem 165:475–482

    Article  CAS  PubMed  Google Scholar 

  • Mínguez-Alarcón L, Mendiola J, López-Espín JJ et al (2012) Dietary intake of antioxidant nutrients is associated with semen quality in young university students. Hum Reprod 27(9):2807–2814

    Article  PubMed  CAS  Google Scholar 

  • Morris WL, Ducreux L, Griffiths DW et al (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55(399):975–982

    Article  CAS  PubMed  Google Scholar 

  • Morris WL, Ducreux LJ, Fraser PD et al (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8(3):253–263

    Article  CAS  PubMed  Google Scholar 

  • Müller L, Caris-Veyrat C, Lowe G et al (2016) Lycopene and its antioxidant role in the prevention of cardiovascular diseases-a critical review. Crit Rev Food Sci Nutr 56(11):1868–1879

    Article  PubMed  CAS  Google Scholar 

  • Othman R (2009) Biochemistry and genetics of carotenoid composition in potato tubers. Doctoral dissertation, Lincoln University

    Google Scholar 

  • Palermo M, Pellegrini N, Fogliano V (2014) The effect of cooking on the phytochemical content of vegetables. J Sci Food Agric 94(6):1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Palmer AC, West KP, Dalmiya N et al (2012) The use and interpretation of serum retinol distributions in evaluating the public health impact of vitamin A programmes. Public Health Nutr 15:1201–1215

    Article  PubMed  Google Scholar 

  • Palozza P, Krinsky NI (1992) Antioxidant effects of carotenoids in vivo and in vitro: an overview. Methods Enzymol 213:403–420

    Article  CAS  PubMed  Google Scholar 

  • Payyavula RS, Navarre DA, Kuhl JC et al (2012) Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol 12(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Rivera S, Vilaró F, Canela R (2011) Determination of carotenoids by liquid chromatography/mass spectrometry: effect of several dopants. Anal Bioanal Chem 400(5):1339–1346

    Article  CAS  PubMed  Google Scholar 

  • Römer S, Lubeck J, Kauder F et al (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JA, Medina-Remón A, Pérez-Jiménez J et al (2015) Effects of food processing on polyphenol contents: a systematic analysis using Phenol-Explorer data. Mol Nutr Food Res 59(1):160–170

    Article  CAS  PubMed  Google Scholar 

  • Sander LC, Sharpless KE, Craft NE et al (1994) Development of engineered stationary phases for the separation of carotenoid isomers. Anal Chem 666:1667–1674

    Article  Google Scholar 

  • Sander LC, Sharpless KE, Pursch M (2000) C30 stationary phases for the analysis of food by liquid chromatography. J Chromatogr A 880:189–202

    Article  CAS  PubMed  Google Scholar 

  • Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT, Yannuzzi LA (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA 272(18):1413–1420

    Article  CAS  PubMed  Google Scholar 

  • Smallcombe SH, Patt SL, Keifer PA (1995) WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. J Magn Reson 117(2):295–303

    Article  CAS  Google Scholar 

  • Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. BBA-Mol Basis Dis 1740(2):101–107

    Article  CAS  Google Scholar 

  • Stahl W, Sies H (2012) β-Carotene and other carotenoids in protection from sunlight. Am J Clin Nutr 96(5):1179S–1184S

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Heinrich U, Jungmann H et al (2000) Carotenoids and carotenoids plus vitamin E protect against ultraviolet light–induced erythema in humans. Am J Clin Nutr 71(3):795–798

    Article  CAS  PubMed  Google Scholar 

  • Sulli M, Mandolino G, Sturaro M, Onofri C, Diretto G, Parisi B, Giuliano G (2017) Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS One 12(9):e0184143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun T, Yuan H, Cao H et al (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11(1):58–74

    Article  PubMed  CAS  Google Scholar 

  • Taleuzzaman M, Ali S, Gilani SJ et al (2015) Ultra performance liquid chromatography (UPLC) - a review. Austin J Anal Pharm Chem 2(6):1056

    Google Scholar 

  • Tatarowska B, Milczarek D, Wszelaczyńska E et al (2019) Carotenoids variability of potato tubers in relation to genotype, growing location and year. Am J Potato Res 96:493–504

    Article  CAS  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD et al (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci U S A 97:11192–11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Chen J, Lv F et al (2016) Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chem 197:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Tierno R, Hornero-Méndez D, Gallardo-Guerrero L et al (2015) Effect of boiling on the total phenolic, anthocyanin and carotenoid concentrations of potato tubers from selected cultivars and introgressed breeding lines from native potato species. J Food Compos Anal 41:58–65

    Article  CAS  Google Scholar 

  • Tode C, Maoka T, Sugiura M (2009) Application of LC-NMR to analysis of carotenoids in foods. J Sep Sci 32(21):3659–3663

    Article  CAS  PubMed  Google Scholar 

  • Updike AA, Schwartz SJ (2003) Thermal processing of vegetables increases cis isomers of lutein and zeaxanthin. J Agric Food Chem 51(21):6184–6190

    Article  CAS  PubMed  Google Scholar 

  • Valcarcel J, Reilly K, Gaffney M, O’Brien N (2015) Total carotenoids and l-ascorbic acid content in 60 varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Res 58(1):29–41

    Article  CAS  Google Scholar 

  • Van den Berg H, Faulks R, Granado HF et al (2000) The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agr 80(7):880–912

    Article  Google Scholar 

  • Van Eck J, Conlin B, Garvin DF et al (2007) Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Am J Potato Res 84(4):331

    Article  Google Scholar 

  • Van Vliet T, van Vlissingen MF, van Schaik F et al (1996) β-Carotene absorption and cleavage in rats is affected by the vitamin A concentration of the diet. J Nutr 126(2):499–508

    Article  PubMed  Google Scholar 

  • VanBoekel M, Fogliano V, Pellegrini N et al (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54(9):1215–1247

    Article  CAS  Google Scholar 

  • Varela J, Pereira H, Vila M et al (2015a) Production of carotenoids by microalgae: achievements and challenges. Photosynth Res 127(2):285–286

    Article  CAS  Google Scholar 

  • Varela JC, Pereira H, Vila M et al (2015b) Production of carotenoids by microalgae: achievements and challenges. Photosynth Res 125(3):423–436

    Article  CAS  PubMed  Google Scholar 

  • Walk AM, Khan NA, Barnett SM et al (2017) From neuro-pigments to neural efficiency: the relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. Int J Psychophysiol 118:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan L, Tan HL, Thomas-Ahner JM et al (2014) Dietary tomato and lycopene impact androgen signaling-and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis. Cancer Prev Res 7(12):1228–1239

    Article  CAS  Google Scholar 

  • Weller P, Breithaupt DE (2003) Identification and quantification of zeaxanthin esters in plants using liquid chromatography-mass spectrometry. J Agric Food Chem 51:7044

    Article  CAS  PubMed  Google Scholar 

  • Williams DJ, Edwards D, Hamernig I et al (2013) Vegetables containing phytochemicals with potential anti-obesity properties: a review. Food Res Int 52(1):323–333

    Article  CAS  Google Scholar 

  • Wolters AMA, Uitdewilligen JGAML, Kloosterman BA et al (2010) Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol Biol 73:659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JP, Peng J, Yin K et al (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55(1):150–165

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Sudhakar Changan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Changan, S.S. et al. (2020). Potato Carotenoids. In: Raigond, P., Singh, B., Dutt, S., Chakrabarti, S.K. (eds) Potato. Springer, Singapore. https://doi.org/10.1007/978-981-15-7662-1_9

Download citation

Publish with us

Policies and ethics