Skip to main content

Advertisement

Log in

Comparative Growth, Biomass Production and Fuel Properties Among Different Perennial Plants, Bamboo and Miscanthus

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Bamboo and Miscanthus species are perennial low-input plants that are excellent candidates for bioenergy feedstock production. Biological characteristics, dry matter yields and fuel properties of the bamboo and Miscanthus have been studied. Genotype growth characteristics were determined by measurements of plant height, tillering, tuft diameter, and shoot diameter. To date, comparisons of biomass yields of bamboo and Miscanthus have not been previously reported in the literature. Bamboo and Miscanthus species were collected and previous articles describing the productivity of bamboo and Miscanthus were examined. Genotypes differed in plant height, tillering, tuft diameter, and shoot diameter. Nitrogen, temperature, water and plant density have effects on mature stands biomass production, which ranged from 5.9 to 49.5 tonnes/ha/yr for bamboo and 3.2 to 49.0 tonnes/ha/yr for Miscanthus. With such biomass yields, bamboo and Miscanthus should be considered as two very promising plants for biomass production in Zhejiang, China in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • An, Y., B. Zhou, C. Wen & G. Wang. 2009. Effects of Different Management Patterns on Root System Structure and Biomass of Bambusa oldhami. Forest Research 22(1): 1–6.

    Google Scholar 

  • Bagby, M. O., G. H. Nelson, E. G. Helman & T. F. Clark. 1971. Determination of lignin in non-wood plant fiber sources. Tappi Journal 54: 1876–1878.

    CAS  Google Scholar 

  • Benbi, D. K. & J. S. Brar. 2009. A 25-year record of carbon sequestration and soil porperties in intensive agriculture. Agronomy for Sustainable Development 29: 257–265.

    Article  CAS  Google Scholar 

  • Ceotto, E. 2008. Grasslands for bioenergy production. A review. Agronomy for Sustainable Development 28: 47–55.

    Article  Google Scholar 

  • Clifton-Brown, J. C. & I. Lewandowski. 2001. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. European Journal of Agronomy 6: 97–110.

    Google Scholar 

  • ———, S. P. Long & U. Jorgensen. 2001. Miscanthus productivity. Pp 46–67. In: M. Jones & M. Walsh (eds). Miscanthus for energy and fibre. James and James, London, UK.

    Google Scholar 

  • ———, I. Lewandowski, F. Bangerth & M. B. Jones. 2002. Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, Miscanthus. New Phytologist 154: 335–345.

  • ———, P. F. Stampfl & M. B. Jones. 2004. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biololgy 10: 509–518.

    Article  Google Scholar 

  • Cosentino, S. L., C. Patane, E. Sanzone, V. Copani & S. Foti. 2007. Effects of soil water content and nitrogen supply on the productivity of Miscanthus x giganteus Greef et Deu. in a Mediterranean environment. Industrial Crops and Products 25: 75–88.

    Article  Google Scholar 

  • Danalatos, N. G., S. V. Archontoulis & I. Mitsios. 2007. Potential growth and biomass productivity of Miscanthus x giganteus as affected by plant density and N-fertilization in central Greece. Biomass & Bioenergy 31: 145–152.

    Article  Google Scholar 

  • Dence, C. W. 1992. The determination of lignin. Pp 35–57. In: S. Y. Lin & C. W. Deuce (eds). Methods in lignin chemistry. Springer, Berlin.

    Google Scholar 

  • Embaye, K., M. Weih, S. Ledin & L. Christersson. 2005. Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia: implications for management. Forest Ecology and Management 204: 159–169.

    Article  Google Scholar 

  • Ercoli, L., M. Mariotti, A. Masoni & E. Bonari. 1999. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research 63: 3–11.

    Article  Google Scholar 

  • Fengel, D. & G. Wegener. 1984. Pp 56–59. Wood: chemistry, ultrastructure, reactions. Walter de Gruyter Publishers, Berlin.

    Google Scholar 

  • Hastings, A., J. C. Clifton-Brown, M. Wattenbach, P. Stampfl, C. P. Mitchell & P. Smith. 2008. Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agronomy for Sustainable Development 28: 465–472.

    Article  Google Scholar 

  • Higuchi, H. 1957. Biochemical studies of lignin formation, III. Physiologia Plantarum 10: 633–648.

    Article  Google Scholar 

  • Isagi, Y., T. Kawahara & K. Kamo. 1993. Biomass and net production in a bamboo Phyllostachys bambusoides stand. Ecological Research 8: 123–133.

    Article  Google Scholar 

  • ———, ———, ——— & H. Ito. 1997. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecology 130: 41–52.

    Article  Google Scholar 

  • Jeżowski, S. 2008. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Industrial Crops and Products 27: 65–68.

    Article  Google Scholar 

  • Jorgensen, U., J. Mortensen, J. B. Kjeldsen & K. U. Schwarz. 2003. Establishment, Developement and yield qualoty of fifteen Miscanthus genotypes over three years in Denmark. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 53: 190–199.

    Article  Google Scholar 

  • Li, X., X. F. Bao & F. S. Wang. 2007. Study on biomass of Bamboo (Phyllostachys heterocycla) in South China. Anhui Forestry Science 1: 9–11.

    Google Scholar 

  • Lin, H. 2002. Study on dynamic law of biomass in Bamboo (Phyllostachys heterocycla) Forest Ecosystem. Forest Science Technology Development 16: 25–27.

    Google Scholar 

  • Nath, A. J., G. Das & A. K. Das. 2009. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass & Bioenergy 33: 1188–1196.

    Article  Google Scholar 

  • Panshin, A. J. & C. de Zeeuw. 1980. Pp 268–269. Textbook on wood technology: structure, identication, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill, New York.

    Google Scholar 

  • Price, L., M. J. Bullard, H. Lyons, S. Anthony & P. M. I. Nixon. 2004. Identifying the yield potential of Miscanthus × giganteus: an assessment of the spatial and temporal variability of Miscanthus × giganteus biomass productivity across England andWales. Biomass & Bioenergy 26: 3–13.

    Article  Google Scholar 

  • SAS Institute Inc. 1999. SAS/STAT User's guide, Version 8. SAS Institue Inc., Cary, NC.

    Google Scholar 

  • ———, D. C. Dayton & B. Hames. 2000. Bamboo: an overlooked biomass resource. Biomass & Bioenergy 19: 229–244.

    Article  CAS  Google Scholar 

  • Shanmughavel, P. & K. Francis. 1996. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass & Bioenergy 10: 383–391.

    Article  CAS  Google Scholar 

  • Singh, A. N. & J. S. Singh. 1999. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. Forest Ecology and Management 119: 195–207.

    Article  Google Scholar 

  • Suwannapinunt, W. 1983. A study on the biomass of Thyrsostachys siamensis (Gamble) forest at Hin-Lap, Kanchanaburi. Journal of Bamboo Research 2: 227–237.

    Google Scholar 

  • Veblen, T. T., F. M. Schlegel & B. Escobar. 1980. Dry matter production of two species of bamboo (Chusquea culeou and C. tenuiora) in south-central Chile. Journal of Ecology 68: 397–404.

    Article  Google Scholar 

  • Ververis, C., K. Georghiou, N. Christodoulakis, P. Santas & R. Santas. 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products 19: 245–254.

  • Wu, F., W. Yang & Y. Lu. 2009. Effects of dwarf bamboo (Fargesia denudata) density on biomass, carbon and nutrient distribution pattern. Acta Ecologica Sinica 29: 192–198.

  • Zhou, G. & A. Jin. 1999. Characteristics of the canopy and spatial distribution of leaves in Phyllostachys praecox plantations. Scientia Silvae Sinicae 35: 17–21.

  • Zub, H. W. & M. Brancourt-Hulmel. 2010. Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agronomy for Sustainable Development 30(2): 201–214.

  • ———, S. Arnoult & M. Brancourt-Hulmel. 2011. Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass & Bioenergy 35(1): 637–651.

    Google Scholar 

Download references

Acknowledgements

This research was supported from the Key Project of Department of Science and Technology of Zhejiang Province (2008C12019), National Natural Science Foundation (31070604) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingsong Zheng.

Additional information

Chuntao Hong and Jia Fang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, C., Fang, J., Jin, A. et al. Comparative Growth, Biomass Production and Fuel Properties Among Different Perennial Plants, Bamboo and Miscanthus . Bot. Rev. 77, 197–207 (2011). https://doi.org/10.1007/s12229-011-9076-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-011-9076-x

Keywords

Navigation