Skip to main content

Advertisement

Log in

Composition and Diversity of Lawn Flora in Differently Managed Village Yards – A Case Study from Southwestern Hungary

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Traditionally managed village yards have been disappearing from the Central-European countryside. Their lawn flora is likely to provide a unique habitat for many plants that are adapted to this environment. Composition of lawn flora was investigated in differently managed village yards (i.e., regularly mown and regularly trampled yards, poultry yards, paved yards) in southwestern Hungary. The main goal of the study was to detect the impacts of these different management regimes on the composition and diversity of the vegetation. In total, 240 1-m2 plots were sampled in 60 yards ranging from 80 m2 to 5,000 m2 in size. In the redundancy analysis, eight significant variables (degree of southness, slope, age, total size of yards; mowing, trampling and grazing regime; and the number of dogs) explained 16 % of the total variation in species data. The most diverse flora across yards was detected in the paved ones, and their stands also proved to be the most compositionally distinctive. In contrast, presence of domestic animals can contribute to local species loss as well as to a decrease in within-yard-type variability. These results highlight the importance of certain anthropogenic disturbances in maintaining high plant diversity, but also underline the crucial role of small-scale land management practices in rural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Plant nomenclature :

Simon (2000)

References

  • Ahrns C (2009) The ecological indication content of Central European village floras. Ecol Indicators 9:605–620

    Article  Google Scholar 

  • Balassa I (1997) Magyar néprajz nyolc kötetben 4. – ÉletmódAnyagi kultúra. 3. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Balogh L, Dancza I, Király G (2004) A magyarországi neofitonok időszerű jegyzéke és besorolásuk inváziós szempontból (Actual list of neophytes in Hungary, and their classification according their invasiveness). In Mihály B, Botta-Dukát Z (eds) Biológiai inváziók MagyarországonÖzönnövények (Biological invasions in HungaryInvasive plants). A KvVM Természetvédelmi Hivatalának tanulmánykötetei 9, TermészetBÚVÁR Alapítvány Kiadó, Budapest, pp 61–92

    Google Scholar 

  • Beddows AR (1967) Biological Flora of the British Isles – Lolium perenne L. J Ecol 55:567–587

    Article  Google Scholar 

  • Bergmeier E (1983) Bemerkungen zum Rückgang der Dorfflora am Beispiel der Gemeinde Kalletal (Kr. Lippe). Nat Landschaft 58:330–332

    Google Scholar 

  • Bergmeier E (1990) Spontanvegetation Nordgriechischer Bergdörfer. Folia Geobot 25:27–61

    Google Scholar 

  • Bihari Z, Szalai S, Bozó L (2009) Natural environment – climate. In Kocsis K, Schweitzer F (eds) Hungary in maps. HAS Geographical Research Institute, Budapest, pp 45–50

    Google Scholar 

  • Borhidi A (1995) Social behavior types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Bot Hung 39:97–181

    Google Scholar 

  • Čarni A, Mucina L (1998) Vegetation of trampled soil dominated by C4 plants in Europe. J Veg Sci 9:45–56

    Article  Google Scholar 

  • Cilliers SS, Bredenkamp GJ (2000) Vegetation of road verges on an urbanisation gradient in Potchefstroom, South Africa. Landscape Urban Planning 46:217–239

    Article  Google Scholar 

  • Clark MS, Gage SH (1996) Effects of free-range chickens and geese on insect pests and weeds in an agro-ecosystems. Amer J Alternative Agric 11:39–47

    Article  Google Scholar 

  • Crawley MJ (1997) Plant ecology. Blackwell Science Ltd., Oxford

    Google Scholar 

  • Davies ZG, Fuller RA, Loram A, Irvine KN, Sims V, Gaston KJ (2009) A national scale inventory of resource provision for biodiversity within domestic gardens. Biol Conservation 142:761–771

    Article  Google Scholar 

  • Ellenberg H (1952) Meadows and pastures and their valuation with regard to site conditions. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Fagot M, De Cauwer B, Beeldens A, Boonen E, Bilcke R (2011) Weed flora in paved areas in relation to environment, pavement characteristics and weed control. Weed Res 51:650–660

    Article  Google Scholar 

  • Gotelli NJ, Colvell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Grosse-Brauckmann G (1953) Über die Verbreitung ruderaler Dorfpflanzen innerhalb eines kleinen Gebietes. Mitt Florist-Soziol Arbeitsgem NF Stolzenau/Weser 4:5–10

    Google Scholar 

  • Grundy AC (2007) Weed occurrence on pavements in the UK: The results from a survey of Leamington Spa. Aspect Appl Biol 82:175–182

    Google Scholar 

  • Gutte P (1986) Dynamik der Ruderalvegetation in Siedlungsbereichen. Archiv Naturschutz Landschaftsf 26:99–104

    Google Scholar 

  • Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. J Anim Ecol 61:151–158

    Article  Google Scholar 

  • Hejný S (1973) Beitrag zur Charakteristik der Veränderung der Ruderalgesellschaften in Südböhmen. Acta Bot Akad Sci Hung 19:129–138

    Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST, Palaeontological Statistics software package for education and data analysis. Palaeontol Electronica 4(1), art. 4

    Google Scholar 

  • Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive database management system for vegetation data. J Veg Sci 12:589–591

    Article  Google Scholar 

  • Hermansen JE, Strudsholm K, Horsted K (2004) Integration of organic animal production into land use with special reference to swine and poultry. Livestock Prod Sci 90:11–26

    Article  Google Scholar 

  • Ilmarinen K, Mikola J (2009) Soil feedback does not explain mowing effects on vegetation structure in a semi-natural grassland. Acta Oecol 35:838–848

    Article  Google Scholar 

  • Klotz S, Briemle G (2002) BIOLFLORa data base on bio-ecological parameters of the flora of Germany. BfN-Schriftenvertrieb im Landwirtschaftsverlag, Münster

    Google Scholar 

  • Kapitány Á, Kapitány G (2005) Globalisation, individualisation, modernisation, urbanisation and housing in Hungary. Társadalomkutatás 23:91–111

    Article  Google Scholar 

  • Király G (ed) (2009) New Hungarian herbal. The vascular plants of Hungary. Identification key. Aggteleki Nemzeti Park Igazgatóság, Jósvafő

    Google Scholar 

  • Knörzer K-H (1987) Geschichte der synanthropen Vegetation von Köln. Kölner Jahrb Vor- u Frühgesch 20:271–388

    Google Scholar 

  • Kopecký K (1986) Der Rückgang von Malvetum neglectae und die Sukzession auf seinen Standorten. Preslia 58:63–74

    Google Scholar 

  • Kumar N, Singh B, Kaul VK, Ahuja PS (2005) Chemical and biological aspects of iridoid bearing plants of temperate region. Stud Nat Prod Chem 32:247–302

    Article  CAS  Google Scholar 

  • Legendre P, Gallagher EG (2001) Ecologically meaningfull transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Loram A, Thomson K, Warren PH, Gaston KJ (2008) Urban domestic gardens (XII): The richness and composition of the flora in five UK cities. J Veg Sci 19:321–330

    Article  Google Scholar 

  • Loram A, Warren P, Thompson K, Gaston K (2011) Urban domestic gardens: The effects of human interventions on garden composition. Environm Managem 48:808–824.

    Google Scholar 

  • Lososová Z, Simonová D (2008) Changes during the 20th century in species composition of synanthropic vegetation in Moravia (Czech Republic). Preslia 80:291–305

    Google Scholar 

  • Lososová Z, Otýpková Z, Sádlo J, Láníková D (2009) Annual vegetation of arable land and ruderal habitats. In Chytrý M (ed) Vegetation of the Czech Republic2. Ruderal, weed, rock and scree vegetation. Academia, Praha, pp 73–202

    Google Scholar 

  • Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K, Hájek O, Kintrová K, Kühn I, Láníková D, Otýpková Z, Řehořek V (2011) Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Global Ecol Biogeogr 21:545–555

    Article  Google Scholar 

  • Lubbe CS, Siebert SJ, Cilliers SS (2010) Political legacy of South Africa affects the plant diversity patterns of urban domestic gardens along a socio-economic gradient. Sci Res Essays 5:2900–2910

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Ouředníček M, Špačková P, Feřtrová M (2011) Changes in social milieu and quality of life in depopulating areas of the Czech Republic. Sociol Čas 47:777–803

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) Vegan: community ecology package. R package version 1.15-4. Available at: http://CRAN.R-project.org/package=vegan

  • Pavlů V, Gaisler J, Hejcman M, Pavlů L (2006) Effect of different grazing system on dynamics of grassland weedy species. J Pl Dis Protect 20:377–383

    Google Scholar 

  • Peres-Neto P, Legendre P, Dray S, Borcard D (2006) Variation partioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Pinilla V, Ayuda MI, Sáez LA (2008) Rural depopulation and the migration turnaround in Mediterranean Western Europe: a case study of Aragon. J Rural Comm Developm 3:1–22

    Google Scholar 

  • Pinke Gy, Király G, Barina Z, Mesterházy A, Balogh L, Csiky J, Schmotzer A, Molnár VA, Pál RW (2011) Assessment of endangered synanthropic plants of Hungary with special attention to arable weeds. Pl Biosystems 145:426–435

    Article  Google Scholar 

  • Podani J (2001) SYN-TAX (2000) Computer programs for data analysis in ecology and systematics, User’s manual. Scientia Kiadó, Budapest

    Google Scholar 

  • Pykälä J (2005) Plant species responses to cattle grazing in mesic semi-natural grassland. Agric Ecosyst Environm 108:109–117

    Article  Google Scholar 

  • Pyšek A (1992) Bemerkungen zum gegenwärtigen Stand der westböhmischen Ruderalvegetation. Folia Mus Rer Natur Bohem Occid 36:1–18

    Google Scholar 

  • Pullin AS, Báldi A, Can OE, Dieterich M, Kati V, Livoreil B, Lövei G, Mihók B, Nevin O, Selva N, Sousa-Pinto I (2009) Conservation focus on Europe: Major conservation policy issues that need to be informed by Conservation Science. Conservation Biol 23:818–824

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org

  • Sagar GR, Harper JL (1964) Biological flora of the British Isles – Plantago major L. J Ecol 52:189–205

    Article  Google Scholar 

  • Schippers P, Joenje W (2002) Modelling the effect of fertiliser, mowing, disturbance and width on the biodiversity of plant communities of field boundaries. Agric Ecosyst Environm 93:351–365

    Article  Google Scholar 

  • Siebert SF (2004) Traditional agriculture and the conservation of biological diversity in Crete, Greece. Int J Agric Sustainability 2:109–117

    Article  Google Scholar 

  • Šilc U (2010) Synanthropic vegetation: pattern of various disturbances on life history traits. Acta Bot Croatia 69:215–227

    Google Scholar 

  • Simon T (2000) A magyarországi edényes flóra határozója (Vascular flora of Hungary). Nemzeti Tankönyvkiadó, Budapest

    Google Scholar 

  • Smith RM, Thompson K, Hodgson JG, Warren PH, Gatson KJ (2006) Urban domestic gardens (IX): Composition and richness of the vascular plant flora, and implications for native biodiversity. Biol Conservation 129:312–322

    Article  Google Scholar 

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sci 57:255–289

    Article  Google Scholar 

  • Thompson K, Austin KC, Smith RM, Warren PH, Angold PG, Gaston KJ (2003) Urban domestic gardens (I): Putting small-scale plant diversity in context. J Veg Sci 14:71–78

    Article  Google Scholar 

  • Thompson K, Hodgson JG, Smith RM, Warren PH, Gaston KJ (2004) Urban domestic gardens (III): Composition and diversity of lawn floras. J Veg Sci 15:373–378

    Article  Google Scholar 

  • Thompson K, Colsell S, Carpenter J, Smith RM, Warren PH, Gaston KJ (2005) Urban domestic gardens (VII): a preliminary survey of soil seed banks. Seed Sci Res 15:133–141

    Article  Google Scholar 

  • Török P, Matus G, Papp M, Tóthmérész B (2008) Secondary succession of overgrazed Pannonian sandy grasslands. Preslia 80:73–85

    Google Scholar 

  • Török P, Matus G, Papp M, Tóthmérész B (2009) Seed bank and vegetation development of sandy grasslands after goose breeding. Folia Geobot 44:31–46

    Article  Google Scholar 

  • Wattendorf P (1997) Influences of land-use on the structure of ruderal vegetation in the village of Lonja (Lonjsko Polje Nature Park/Croatia). Nat Croat 6:349–366

    Google Scholar 

  • Wichtl M (2002) Teedrogen und PhytopharmakaEin Handbuch für die Praxis auf wissenschaftlicher Grundlage. WVG, Stuttgart

    Google Scholar 

  • Wittig R (1984) Sterben die Dorfpflanzen aus? Ergebnisse einer umfassenden Untersuchung der Dorfflora in 180 Dörfen Nordheim-Westfalens. Der Gemeinderat 27:36–37

    Google Scholar 

  • Wittig R (2002) Siedlungsvegetation. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Zerbe S, Choi, I, Kowarik I (2004) Characteristics and habitats of non-native plant species in the city of Chonju, southern Korea. Ecol Res 19:91–98

    Article  Google Scholar 

  • Zwaenepoel A, Roovers P, Hermy M (2006) Motor vehicles as vectors of plant species from road verges in a suburban environment. Basic Appl Ecol 7:83–93

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Carpathes Nature Conservation Foundation and TÁMOP-4.2.2/B-10/1-2010-0029. We are grateful to the yard owners for the use of their property. Thanks to Prof. Sándor Bartha (Hungarian Academy of Sciences) for his help in initiating the project, to Dr. Emily Rauschert (The Pennsylvania State University) and to Prof. Paul Alaback (University of Montana) for useful comments and linguistic improvement of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, R.W., Csete, S., Botta-Dukát, Z. et al. Composition and Diversity of Lawn Flora in Differently Managed Village Yards – A Case Study from Southwestern Hungary. Folia Geobot 48, 209–227 (2013). https://doi.org/10.1007/s12224-012-9142-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-012-9142-0

Keywords

Navigation