Skip to main content

Advertisement

Log in

An environment-benign approach of bamboo pulp bleaching using extracellular xylanase of strain Bacillus stratosphericus EB-11 isolated from elephant dung

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The use of microbial enzymes is highly encouraged in paper and pulp industries to reduce the excessive use of hazardous chemicals. During the study, xylanase of Bacillus stratosphericus EB-11 was characterized for pulp bleaching applications. The extracellular xylanase was produced under submerged fermentation using bamboo waste as a natural carbon source. There was fast cell division and enzyme production under optimized fermentation conditions in the bioreactor. The highest activity was 91,200U after 30 h of growth with Km and Vmax of 3.52 mg/mL and 391.5 μmol/min per mg respectively. The purified enzyme with molecular mass ~ 60 kDa had conferred positive activity on native PAGE. The strong inhibition by ethylenediaminetetraacetate and SDS showed the metallo-xylanase nature of the purified enzyme. The bacterial xylanase reduces the use of hydrogen peroxide by 0.4%. Similarly, biological oxygen demand and chemical oxygen demand were reduced by 42.6 and 35.2%. The xylanase-hydrogen peroxide combined treatment and conventional chlorine dioxide-alkaline (CDE1D1D2) bleaching showed almost similar improvement in physicochemical properties of bamboo pulp. Xylanase-peroxide bleaching reduces the lignin content to 4.95% from 13.32% unbleached pulp. This content after CDE1D1Dtreatment was 4.21%. The kappa number decreased from 15.2 to 9.46 with increasing the burst factor (15.51), crystallinity index (60.25%), viscosity (20.1 cp), and brightness (65.4%). The overall finding will encourage the development of new cleaner methods of bleaching in the paper and pulp industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V (2013) Industrial waste-based compost as a source of novel cellulolytic strains and enzymes. FEMS Microbiol Lett 339:93–101

    Article  CAS  PubMed  Google Scholar 

  • Andreu G, Vidal T (2014) An improved TCF sequence for biobleaching kenaf pulp: influence of the hexenuronic acid content and the use of xylanase. Bioresour Technol 152:253–258

    Article  CAS  PubMed  Google Scholar 

  • Annamalai N, Thavasi R, Jayalakshmi S, Balasubramanian T (2009) Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated from marine environment. Indian J Biotechnol 8:291–297

    CAS  Google Scholar 

  • Araki T, Inoue N, Morishita T (1998) Purification and characterization of beta-1,3-xylanase from a marine bacterium, Alcaligenes sp. XY-234. J Gen Appl Microbiol 44:269–274

    Article  CAS  PubMed  Google Scholar 

  • Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernande M (2003) Kraft pulp bio bleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT. 3335. Appl Environ Microbiol 69:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafi O, Yerushalmi L, Haghighat F (2015) Wastewater treatment in the pulp-and-paper industry: a review of treatment processes and the associated greenhouse gas emission. J Environ Manage 158:146–157

    Article  CAS  PubMed  Google Scholar 

  • Bajaj BK, Manhas K (2012) Production and characterization of xylanase from Bacillus licheniformis P11 (C) with potential for fruit juice and bakery industry. Biocatal Agric Biotechnol 4:330–337

    Article  Google Scholar 

  • Bajaj BK, Singh NP (2010) Production of xylanase from an alkali tolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl Biochem Biotechnol 162:1804–1818

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (2005) Environmentally benign approaches for pulp bleaching. Elsevier Sci B.V., the Netherlands

  • Bajpai P (1992) Biobleaching of kraft pulp. Proc. Biochem 27:319–325

    CAS  Google Scholar 

  • Banka AL, Albayrak GS, Gulari E (2014) Secretory expression and characterization of two hemicellulases, xylanase, and β-xylosidase, isolated from Bacillus Subtilis M015. Appl Biochem Biotechnol 174:2702–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 8:353–368

    Article  CAS  PubMed  Google Scholar 

  • Beg QA, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microb Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Bergey DH et al (1994) Bergey’s manual of determinative bacteriology (ed. Williams & Wilkins) 1860–1937

  • Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endobeta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bouacem K, Bouanane-Darenfed A, Boucherba N, Joseph M, Gagaouam M, Ben Hania W, Kecha M, Benallaoua S, Hacène H, Ollivier B, Fardeau ML (2014) Partial characterization of xylanase produced by Caldicoprobacter algeriensis, a new thermophilic anaerobic bacterium isolated from an Algerian hot spring. Appl Biochem Biotechnol 174:1969–1981

    Article  CAS  PubMed  Google Scholar 

  • Bradner J, Gillings M, Nevalainen K (1999) Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different temperatures on solid media. World J Microbiol Biotechnol 15:131–132

    Article  Google Scholar 

  • Buchert J, Tenkanen M, Kantelinen A, Viikari L (1994) Application of xylanases in the pulp and paper industry. Biores Technol 50:65–72

    Article  CAS  Google Scholar 

  • Cardoso OA, Filho EX (2003) Purification and characterization of a novel cellulase-free xylanase from Acrophialophora nainiana. FEMS Microbiol Lett 223:309–314

    Article  CAS  PubMed  Google Scholar 

  • Craciun G, Dutuc G, Botar A, Puitel AC, Gavrilescu D (2010) Environmentally friendly techniques for chemical pulp bleaching. Environ Eng Manag J 9:73–80

    Article  CAS  Google Scholar 

  • Ding CH, Jiang ZQ, Li XT, Li LT, Kusakabe I (2004) High activity xylanase production by Streptomyces olivaceoviridis E-86. World J Microbiol Biotechnol 20:7–10

    Article  CAS  Google Scholar 

  • Dutta T, Sengupta R, Sahoo R, Sinha RS, Bhattacharjee A, Ghosh SA (2007) Novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: production, purification and characterization. Lett Appl Microbiol 44:206–211

    Article  CAS  PubMed  Google Scholar 

  • Farouq AA, Abdullah DK, Hooi-Ling F, Abdullah N (2012) Isolation and characterization of Coprophilous cellulolytic fungi from Asian elephant (Elephas maximus) dung. J Biol Agr Healthc 2:44–51

    Google Scholar 

  • Garg G, Dhiman SS, Mahajan R, Kaur A, Sharma J (2011) Bleach-boosting effect of crude xylanase from Bacillus stearothermophilus SDX on wheat straw pulp. New Biotechnol 28:58–64

    Article  CAS  Google Scholar 

  • Gavrilescu D (2010) Environmentally friendly techniques for chemical pulp bleaching. Environ Eng Manag J 9:73–80

    Article  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Ghoshal G, Banerjee UC, Shivhare US (2015) Utilization of agrowaste and xylanase production in solid state fermentation. J Biochem Tech 6:1013–1024

    Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2006) The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enzym Microb Technol 38:101–108

    Article  CAS  Google Scholar 

  • Goluguri BR, Thulluri C, Cherupally M, Nidadavolu N, Achuthananda D, Mangamuri LN, Addepally U (2012) Potential of thermo and alkali stable xylanases from Thielaviopsis basicola (MTCC-1467) in biobleaching of wood kraft pulp. Appl Biochem Biotechnol 167:2369–2380

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Bhushan B, Hoondal GS (2000) Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in bio-bleaching of kraft pulp. J Appl Microbiol 88:325–334

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Garg S, Capalash N, Gupta N, Sharma P (2015) Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 3:947–956

    Article  Google Scholar 

  • Haas H, Friedlin E, Stöffler G, Redl B (1993) Cloning and structural organization of a xylanase-encoding gene from Penicillium chrysogenum. Gene 126:237–242

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme and Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Hatanaka K (2012) Incorporation of fluorous glycosides to cell membrane and saccharide chain elongation by cellular enzymes. Top Curr Chem 308:291–306

    Article  CAS  PubMed  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Lin J, Ye X, Wang G (2015) Molecular characterization of a thermophilic and salt- and alkaline-tolerant xylanase from Planococcus sp. SL4, a strain isolated from the sediment of a soda lake. J Microbiol Biotechnol 25(5):662–671

  • Huessen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202

    Article  Google Scholar 

  • Kaur A, Mahajan R, Singh A, Garg G, Sharma J (2010) Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101:9150–9155

    Article  CAS  PubMed  Google Scholar 

  • Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Envt Microbiol 59:1725–1730

    Article  CAS  Google Scholar 

  • Kiran MD, Prakash JSS, Annapoorni S, Dube S, Kusano T, Okuyama H, Murata N, Shivaji S (2004) Psychrophilic Pseudomonas syringae requires trans-monounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401–410

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Marín-Navarro J, Shukla P (2016) Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol 32:34

    Article  PubMed  Google Scholar 

  • Lin X, Han S, Zhang N, Hu H, Zheng S, Ye Y, Lin Y (2013) Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme Microb Technol 52:91–98

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yang H, Shin H, Chen RR, Li J, Du G, Chen J (2013) How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 4:212–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Fei B (2013) Characteristics of moso bamboo with chemical pre-treatment, sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization, in: Anuj Chandel (Ed.), InTech, ISBN: 978–953- 51–1119–1.  https://doi.org/10.5772/55379

  • Lorliam W, Akaracharanya A, Suzuki M, Ohkuma M, Tanasupawat S (2013) Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand. Microbes Environ 28:354–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • MacCabe AP, Fernández-Espinar MT, de Graaff LH, Visser J, Ramón D (1996) Identification, isolation and sequence of the Aspergillus nidulans xlnC gene encoding the 34-kDa xylanase. Gene 175:29–33

    Article  CAS  PubMed  Google Scholar 

  • Makhuvele R, Ncube I, Jansen van Rensburg EL, La Grange DC (2017) Isolation of fungi from dung of wild herbivores for application in bioethanol production. Braz J Microbiol 48:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masunga GS, Andresen O, Taylor JE, Dhillion SS (2006) Elephant dung decomposition and coprophilous fungi in two habitats of semi-arid Botswana. Mycol Res 110:1214–1226

    Article  PubMed  Google Scholar 

  • Mmango-Kaseke Z, Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI (2016) Optimization of cellulase and xylanase production by Micrococcus species under submerged fermentation. Sustainability 8:1168. https://doi.org/10.3390/su8111168

  • Morales P, Madaro A, Perez-Gonzales JA, Sendra JM, Pingara F, Flors A (1993) Purification and characterization of alkaline xylanase from Bacillus polymyxa. Appl Environ Microbiol 59:1376–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagar S, Mittal A, Kumar D, Kumar L, Kuhad RC, Gupta VK (2011) Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation. N Biotechnol 28:581–587

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from an alkaliphilic Bacillus sp. strain 41M–1. Appl Env Microbiol 59:2311–2316

    Article  CAS  Google Scholar 

  • Nascimento RP, Coelho RR, Marques S, Alver L, Girio EPS, Amaral Collago MT (2002) Production and partial characterization of xylanase from Streptomycetes sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme Microb Technol 31:549–555

    Article  CAS  Google Scholar 

  • Papagianni M, Moo-Young M (2002) Protease secretion in glucoamylase producer Aspergillus niger cultures: Fungal morphology and inoculum effects. Proc Biochem 37:1271–1278

    Article  CAS  Google Scholar 

  • Patel R, Dodia M, Singh S (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: production and optimization. Process Biochem 40:3569–3575

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater—a review. Sci. Total Environ 333:37e58.

  • Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VG (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7:e38571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash P, Jayalakshmi SK, Prakash B, Rubul M, Sreeramulu K (2011) Production of alkaliphilic, halotolerent, thermostable cellulase free xylanase by Bacillus halodurans PPKS-2 using agro waste: single step purification and characterization. World J Microbiol Biotechnol 28:183–192

    Article  PubMed  Google Scholar 

  • Przybysz Buzała K, Przybysz P, Kalinowska H, Derkowska M (2016) Effect of cellulases and xylanases on refining process and kraft pulp properties. PLoS One 24: 11(8):e0161575

  • Rajasekar T (2007) Study on biobleaching of nonwoods with fungal enzymes. Asian J Biochemical Chem Eng 1:1–6

    Google Scholar 

  • Reid ID, Paice MG (1994) Biological bleaching of kraft pulps by white-rot fungi and their enzymes. FEMS Microbiol Rev 13:369–375

    Article  CAS  Google Scholar 

  • Sanghi A, Garg N, Gupta VK, Mittal AK, Kuhad RC (2010) One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ASH. Braz J Microbiol 4:467–476

    Article  Google Scholar 

  • Sanghi A, Garg N, Kuhar K, Kuhad RC, Gupta VK (2009) Enhanced production of cellulase-free xylanase by alkalophilic Bacillus subtilis ASH and its application in biobleaching of kraft pulp. Bio-Resources 4:1109–1129

    CAS  Google Scholar 

  • Santra A, Karim SA (2003) Rumen manipulation to improve animal productivity. Asian-Aust J Anim Sci 16:748–763

    Article  Google Scholar 

  • Sá-Pereira P, Duarte Coasta-Ferreira M (2000) Electroelution as a simple and fast protein purification method: isolation of an extracellular xylanase from Bacillus sp. CCMI 966. Enzyme Microb Technol 27:95–99

    Article  PubMed  Google Scholar 

  • Santo NS, Murata N (1988) Membrane lipids. Methods Enzymol 167:251–259

    Article  Google Scholar 

  • Sepahy AA, Ghazi S, Sepahy MA (2011) Cost-effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 fermented on waste. Enzym Res 2011:593624

    Google Scholar 

  • Sharma M, Mehta S, Kumar A (2013) Purification and characterization of alkaline xylanase secreted from Paenibacillus macquariensis. Adv Microbiol 3:32–41

    Article  Google Scholar 

  • Sharma P, Bajaj BK (2005) Production and partial characterization of alkali-tolerant xylanase from an alkaliphilic Streptomyces sp. CD3. J Sci Ind Res 64:688–698

    CAS  Google Scholar 

  • Sharma P, Sood C, Singh G, Capalash N (2015) An eco-friendly process for biobleaching of eucalyptus kraft pulp with xylanase producing Bacillus halodurans. J Clean Prod 87:966–970

    Article  CAS  Google Scholar 

  • Singh S, Pillay B, Orior A (2000) Thermal stability of β-xylanases produced by different Thermomyces lanuginosus strains. Enzyme Microb Technol 26:502–508

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan MC, Rele MV (1999) Microbial xylanases for paper industry. Curr Sci 77:137–142

    CAS  Google Scholar 

  • TAPPI test methods (1996) Technical Association of the Pulp and Paper Industry. TAPPI Press, Atlanta

    Google Scholar 

  • Techapun C, Charoenrat T, Poosaran N, Watanabe M, Sasaki K (2002) Thermostable and alkaline-tolerant cellulase-free xylanase produced by thermotolerant Streptomyces sp. Ab106. J Biosci Bioeng 93:431–433

    Article  CAS  PubMed  Google Scholar 

  • Tunga R, Banerjee R, Bhattacharyya BC (2001) Optimization of some additives to improve protease production under SSF. Ind J Exp Biol 39:1144–1148

    CAS  Google Scholar 

  • Van Soest PJ (2004) Nutritional ecology of the ruminant. Second edition. Cornell Univ Press USA

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, de Paepe A, Speleman F (2002) Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034-research0034.11. https://doi.org/10.1186/gb-2002-3-7-research0034

  • Viet DN, Kamio Y, Abe N, Kaneko J, Linko M (1991) Purification and properties of b-1,4-xylanase from Aeromonas caviae W-61. Appl Environ Microbiol 57:445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahyudi A, Cahyanto MN, Soejono M, Bachruddin Z (2010) Potency of lignocellulose degrading bacteria isolated from buffalo and horse gastrointestinal tract and elephant dung for feed fiber degradation. J Indonesian Trop Anim Agric 35:34–41

    Article  Google Scholar 

  • Wamalwa BM, Zhao G, Sakka M, Shiundu PM, Kimura T, Sakka K (2007) High-level heterologous expression of Bacillus halodurans putative xylanase xyn11a (BH0899) in Kluyveromyces lactis. Biosci Biotechnol Biochem 71:688–693

    Article  CAS  PubMed  Google Scholar 

  • Werner DA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, Noë R, Johnson NC, Hammerstein P, Kiers ET (2014) Evolution of microbial markets. PNAS 111:1237–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White BA, Morrison M (2001) Genomic and proteomic analysis of microbial function in the gastrointestinal tract of ruminants—review. Asian-Aust J Anim Sci 14:880–884

    Article  CAS  Google Scholar 

  • Xu B, Dai L, Li J, Deng M, Miao H, Zhou J, Mu Y, Wu Q, Tang X, Yang Y, Ding J, Han N, Huang Z (2016) Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 isolated from the feces of Rhinopithecus bieti. J Microbiol Biotechnol 26:9–19

    Article  CAS  PubMed  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbio 70:1–55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Director, CSIR-NEIST, Jorhat, Assam for providing necessary facilities to carry out the work and BIF Centre, CSIR-NEIST, Jorhat for providing the computational facilities.

Funding

The work is supported by a Department of Biotechnology, New Delhi, Govt. India sponsored project (BT/323/NE/TBP/2012 dtd.12/03/2014). The authors are thankful to the funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization–RKS and RS; writing, review and editing–RKS and RS; data analysis–RKS, AG, and AY; performed the experiments–AG, THA, and AY; supervision–RKS and RS; funding acquisition–RS.

Corresponding author

Correspondence to Rupak Kumar Sarma.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All the authors agree with the submission of this work to Folia Microbiologica.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, R.K., Gohain, A., Ahmed, T.H. et al. An environment-benign approach of bamboo pulp bleaching using extracellular xylanase of strain Bacillus stratosphericus EB-11 isolated from elephant dung. Folia Microbiol 68, 135–149 (2023). https://doi.org/10.1007/s12223-022-01003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-022-01003-1

Keywords

Navigation