Skip to main content

Advertisement

Log in

Isolation and identification of siderophores produced by cyanobacteria

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Cyanobacteria are one of the most successful and oldest forms of life that are present on Earth. They are prokaryotic photoautotrophic microorganisms that colonize so diverse environments as soil, seawater, and freshwater, but also stones, plants, or extreme habitats such as snow and ice as well as hot springs. This diversity in the type of environment they live in requires a successful adaptation to completely different conditions. For this reason, cyanobacteria form a wide range of different secondary metabolites. In particular, the cyanobacteria living in both freshwater and sea produce many metabolites that have biological activity. In this review, we focus on metabolites called siderophores, which are low molecular weight chemical compounds specifically binding iron ions. They have a relatively low molecular weight and are produced by bacteria and also by fungi. The main role of siderophores is to obtain iron from the environment and to create a soluble complex available to microbial cells. Siderophores play an important role in microbial ecology; for example, in agriculture they support the growth of many plants and increase their production by increasing the availability of Fe in plants. The aim of this review is to demonstrate the modern use of physico-chemical methods for the detection of siderophores in cyanobacteria and the use of these methods for the detection and characterization of the siderophore-producing microorganisms. Using high-performance liquid chromatography-mass spectrometry (LC-MS), it is possible not only to discover new chemical structures but also to identify potential interactions between microorganisms. Based on tandem mass spectrometry (MS/MS) analyses, previous siderophore knowledge can be used to interpret MS/MS data to examine both known and new siderophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arceneaux JL, Lankford CE (1966) A schizokinen (siderochrome) auxotroph of Bacillus megaterium induced with N-methyl-N'-nitro-N-nitrosoguanidine. Biochem Biophys Res Commun 24(3):370–375

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JE, van Baalen C (1979) Iron transport in microalgae: the isolation and biological activity of a hydroxamate siderophore from the blue- green alga Agmenellum quadruplicatum. J Gen Microbiol 111:253–262

    Article  CAS  Google Scholar 

  • Armstrong E, Granger J, Mann EL, Price NM (2004) Outer-membrane siderophore receptors of heterotrophic oceanic bacteria. Limnol Oceanogr 49(2):579–587

    Article  CAS  Google Scholar 

  • Avdeef A, Sofen SR, Bregante TL, Raymond KN (1978) Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J Am Chem Soc 100(17):5362–5370

    Article  CAS  Google Scholar 

  • Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413

    Article  PubMed  CAS  Google Scholar 

  • Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124(3):378–379

    Article  PubMed  CAS  Google Scholar 

  • Barbeau K, Rue EL, Trick CG, Bruland KW, Butler A (2003) Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnol Oceanogr 48(3):1069–1078

    Article  CAS  Google Scholar 

  • Beiderbeck H, Taraz K, Budzikiewicz H, Walsby AE (2000) Anachelin, the siderophore of the cyanobacterium Anabaena cylindrica CCAP 1403/2A. Z Naturforsch C 55(9–10):681–687

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23(3):94–97

    Article  PubMed  CAS  Google Scholar 

  • Boiteau RM, Repeta DJ (2015) An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics 7(5):877–884

    Article  PubMed  CAS  Google Scholar 

  • Boiteau RM, Fitzsimmons JN, Repeta DJ, Boyle EA (2013) Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. Anal Chem 85(9):4357–4362

    Article  PubMed  CAS  Google Scholar 

  • Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN, Saito MA, Sedwick PN, DeLong EF, Repeta DJ (2016) Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. PNAS 113(50):14237–14242

    Article  PubMed  CAS  Google Scholar 

  • Crichton RR (2001) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4(3):147–181

    Article  PubMed  CAS  Google Scholar 

  • Ehrenreich IM, Waterbury JB, Webb EA (2005) Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol 71(11):7401–7413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gärdes A, Triana C, Amin SA, Green DH, Romano A, Trimble L (2013) Detection of photoactive siderophore biosynthetic genes in the marine environment. Biometals 26(3):507–516

    Article  PubMed  CAS  Google Scholar 

  • Goldman SJ, Lammers PJ, Berman MS, Sanders-Loehr J (1983) Siderophore-mediated iron uptake in different strains of Anabaena sp. J Bacteriol 156(3):1144–1150

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gulledge BM, Aggen JB, Huang HB, Nairn AC, Chamberlin AR (2002) The microcystins and nodularins: cyclic polypeptide inhibitors of PP1 and PP2A. Curr Med Chem 9(22):1991–2003

    Article  CAS  Google Scholar 

  • Haque F, Banayan S, Yee J, Chiang YW (2017) Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites. Chemosphere 183:164–175. https://doi.org/10.1016/j.chemosphere.2017.05.106

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Maki T, Asano K, Ueda K, Ueda K (2004) Detection of iron(III)-binding ligands originating from marine phytoplankton using cathodic stripping voltammetry. Anal Sci 20(1):89–93

    Article  PubMed  CAS  Google Scholar 

  • Hopkinson BM, Morel FM (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22(4):659–669. https://doi.org/10.1007/s10534-009-9235-2

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50(6):1918–1923

    Article  CAS  Google Scholar 

  • Ito Y, Okada S, Murakami M (2001) Two structural isomeric siderophores from the freshwater cyanobacterium Anabaena cylindrica (NIES-19). Tetrahedron 57:9093–9099

    Article  Google Scholar 

  • Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PM (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305(5690):1612–1615

    Article  PubMed  CAS  Google Scholar 

  • Lammers PJ, Sanders-Loehr J (1982) Active transport of ferric schizokinen in Anabaena sp. J Bacteriol 151(1):288–294

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lankford CE, Walker JR, Reeves JB, Nabbut NH, Byers BR, Jones RJ (1966) Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s) (“schizokinen”). J Bacteriol 91(3):1070–1079

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leão PN, Vasconcelos MT, Vasconcelos VM (2007) Role of marine cyanobacteria in trace metal bioavailability in seawater. Microb Ecol 53(1):104–109

    Article  PubMed  CAS  Google Scholar 

  • Martinez JS, Butler A (2007) Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. J Inorg Biochem 101(11–12):1692–1698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez J, Carter-Franklin J, Mann E, Martin J, Haygood M, Butler A (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci U S A 100:3754–3759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mawji E, Gledhill M, Milton JA, Tarran GA, Ussher S, Thompson A, Wolff GA, Worsfold PJ, Achterberg EP (2008) Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ Sci Technol 42(23):8675–8680

    Article  PubMed  CAS  Google Scholar 

  • McCormack P, Worsfold PJ, Gledhill M (2003) Separation and detection of siderophores produced by marine bacterioplankton using high-performance liquid chromatography with electrospray ionization mass spectrometry. Anal Chem 75(11):2647–2652

    Article  PubMed  CAS  Google Scholar 

  • Mohamed KN, Gledhill M (2015) Determination of specific iron chelator by using LC-ICP-MS and LC-ESI-MS. Procedia Environ Sci 30:256–261

    Article  CAS  Google Scholar 

  • Morrissey J, Bowler C (2012) Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 3:43. https://doi.org/10.3389/fmicb.2012.00043

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy TP, Lean DR, Nalewajko C (1976) Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192(4242):900–902

    Article  PubMed  CAS  Google Scholar 

  • Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V (2016) Characterization of microbial siderophores by mass spectrometry. Mass Spectrom Rev 35(1):35–47

    Article  PubMed  CAS  Google Scholar 

  • Rao PV, Gupta N, Bhaskar AS, Jayaraj R (2002) Toxins and bioactive compounds from cyanobacteria and their implications on human health. J Environ Biol 23(3):215–224

    PubMed  CAS  Google Scholar 

  • Rashmi V, Shylajanaciyar M, Rajalakshmi R, D'Souza SF, Prabaharan D, Uma L (2013) Siderophore mediated uranium sequestration by marine cyanobacterium Synechococcus elongatus BDU 130911. Bioresour Technol 130:204–210

    Article  PubMed  CAS  Google Scholar 

  • Raymond KN, Muller G, Matzanke BF (1984) Complexation of iron by siderophores—a review of their solution and structural chemistry and biological function. Top Curr Chem 123:49–102

    Article  CAS  Google Scholar 

  • Sandonato BB, Santos VG, Luizete MF, Bronzel JL Jr, Eberlinb MN, Milagre HMS (2017) MALDI imaging mass spectrometry of fresh water cyanobacteria: spatial distribution of toxins and other metabolites. J Braz Chem Soc 28(4):521–528

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  PubMed  CAS  Google Scholar 

  • Simpson FB, Neilands JB (1976) Siderochromes in cyanophyceae: isolation and characterization of schizokinen from Anabaena sp. J Phycol 12:44–48

    Google Scholar 

  • Stintzi A, Barnes C, Xu J, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci U S A 97(20):10691–10696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400(6744):554–557

    Article  PubMed  CAS  Google Scholar 

  • Velasquez I, Nunn BL, Ibisanmi E, Goodlett DR, Hunter KA, Sander SG (2011) Detection of hydroxamate siderophores in coastal and sub-Antarctic waters off the South Eastern Coast of New Zealand. Mar Chem 126(1–4):97–107

    Article  CAS  Google Scholar 

  • Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1:43–63

    Article  Google Scholar 

  • Walker LR, Tfaily MM, Shaw JB, Hess NJ, Paša-Tolić L, Koppenaal DW (2017) Unambiguous identification and discovery of bacterial siderophores by direct injection 21 Tesla Fourier transform ion cyclotron resonance mass spectrometry. Metallomics 9(1):82–92

    Article  PubMed  CAS  Google Scholar 

  • Zürcher S, Wäckerlin D, Bethuel Y, Malisova B, Textor M, Tosatti S, Gademann K (2006) Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc 128(4):1064–1065

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The research was supported by Ministry of Education, Youth and Sports of the Czech Republic (LO1509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Řezanka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Řezanka, T., Palyzová, A. & Sigler, K. Isolation and identification of siderophores produced by cyanobacteria. Folia Microbiol 63, 569–579 (2018). https://doi.org/10.1007/s12223-018-0626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-018-0626-z

Navigation