Skip to main content
Log in

Degrading ability of oligocyclic aromates by Phanerochaete sordida selected via screening of white rot fungi

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Seventy-nine white rot strains were screened to determine if they had the potential for use in the degradation of oligocyclic aromates (PAHs) by measuring their dye-decoloration rate. Fourteen strains that were selected based on their dye-decoloration rate were then evaluated for the ability to tolerate various levels of PAHs spiked in agar medium. The ability of white rot fungi to degrade 3- or 4-ring PAHs (anthracene, phenanthrene, fluoranthene, pyrene) was determined. Two strains of Phanerochaete sordida (KUC8369, KUC8370) were possible PAHs degraders, degrading a significantly greater amount of phenanthrene and fluoranthene than the culture collection strain P. chrysosporium (a known PAHs degrader). The production of manganese peroxidase, the only extracellular ligninolytic enzyme detected during the cultivation, was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANT:

anthracene

PHE:

phenanthrene

ELM(s):

extracellular ligninolytic enzyme(s)

LiP:

lignin peroxidase

GC:

gas chromatography

MEA:

malt extract agar medium

MS:

mass spectrometry

FLT:

fluoranthene

PYR:

pyrene

LAC:

laccase (phenol oxidase)

MnP:

Mn-dependent peroxidase

PAH(s):

oligocyclic aromate(s) (‘polycyclic aromatic hydrocarbons’)

RBBR:

Remazol brilliant blue R

WRF:

white rot fungus(i)

References

  • Altschul S.F., Boguski M.S., Gish W., Wootton J.C.: Issues in searching molecular sequence databases. Nat.Genet.6, 119–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Bezalel L., Hadar Y., Cerniglia C.E.: Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl.Environ.Microbiol.62, 292–295 (1996).

    CAS  PubMed  Google Scholar 

  • Bumpus J.A.: Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl.Environ.Microbiol.55, 154–158 (1989).

    CAS  PubMed  Google Scholar 

  • Cajthaml J., Erbanová P., Kollmann A., Novotný Č., Šašek V., Moucin C.: Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol.53, 289–294 (2008).

    Article  CAS  Google Scholar 

  • Cerniglia C.E., Kelly D.W., Freeman J.P., Miller D.W.: Microbial metabolism of pyrene. Chem.Biol.Interact.57, 203–216 (1986).

    Article  CAS  PubMed  Google Scholar 

  • De Koker T.H., Nakasone K.K., Haarhof J., Burdsall H.H. Jr., Janse B.J.H.: Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region. Mycol.Res.107, 1032–1040 (2003).

    Article  PubMed  Google Scholar 

  • Gardes M., Bruns T.D.: ITS primers with enhanced specificity for basidiomycetes — application to the identification of mycorrhizae and rusts. Mol.Ecol.2, 113–118 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T., Tachibana S., Itoh K.: Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J.Hazard Mater.164, 911–917 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hammel K.E., Kalyanaraman B., Kirt T.K.: Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosponum ligninase. J.Biol.Chem.261, 16948–16952 (1986).

    CAS  PubMed  Google Scholar 

  • Haritash A.K., Kaushik C.P.: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J.Hazard Mater.169, 1–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hwang S.S., Song H.G.: Biodegradation of pyrene by the white rot fungus, Irpex lacteus. J.Microbiol.Biotechnol.10, 344–348 (2000).

    CAS  Google Scholar 

  • Juan D., Jun C., Juan Z., Shixiang G.: Polycyclic aromatic hydrocarbon and biodegradation and extracellular enzyme secretion in agitated and stationary cultures of Phanerochaete chrysosporium. J.Environ.Sci.20, 88–93 (2008).

    Article  Google Scholar 

  • Kim G.-H., Lim Y.W., Song Y.-S., Kim J.-J.: Decay fungi from playground wood products in service using LSU rDNA sequence analysis. Holzforschung59, 459–466 (2005).

    Article  CAS  Google Scholar 

  • Kim G.-H., Lim Y.W., Choi Y.-S., Kim M.-J., Kim J.-J.: Primary and secondary decay fungi on exposed pine tree logs in the forest. Holzforschung63, 633–638 (2009).

    Article  CAS  Google Scholar 

  • Lamar R.T., Larsen M.J., Kirt T.K.: ’sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl.Environ. Microbiol.56, 3519–3526 (1990).

    CAS  Google Scholar 

  • Lambert M., Kremer S., Sterner O., Anke H.: Metabolism of pyrene by the basidiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl.Environ.Microbiol.60, 3597–3601 (1994).

    CAS  PubMed  Google Scholar 

  • Lange B., Kremer S., Sterner O., Anke H.: Pyrene metabolism in Crinipellis stipitaria: identification of trans-4,5-dihydro-4,5-dihydroxypyrene and 1-pyrenylsulfate in strain JK364. Appl.Environ.Microbiol.60, 3602–3607 (1994).

    CAS  PubMed  Google Scholar 

  • Lei A.P., Wong Y.S., Tam N.F.Y.: Removal of pyrene by different microalgal species. Water Sci.Technol.46, 195–201 (2002).

    CAS  PubMed  Google Scholar 

  • Lei A.P., Hu Z.L., Wong Y.S., Tam N.F.Y.: Removal of fluoranthene and pyrene by different microalgal species. Biores.Technol.98, 273–280 (2007).

    Article  CAS  Google Scholar 

  • Lim Y.W., Kim J.-J., Chedgy R., Morris P.I., Breuil C.: Fungal diversity from western redcedar fences and their resistance to β-thujaplicin. Antonie van Leeuwenhoek87, 109–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Morgan P., Lewis S.T., Watkinson R.J.: Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl.Microbiol.Biotechnol.34, 693–696 (1991).

    Article  CAS  Google Scholar 

  • Novotný Č., Svobodová K., Erbanová P., Cajthaml T., Kasinath A., Lang E., Šašek V.: Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol.Biochem.36, 1545–1551 (2004).

    Article  Google Scholar 

  • Pasti M.B., Crawford D.L.: Relationship between the abilities of streptomycetes to decolorize three anthron-type dyes and to degrade ligno-cellulose. Can.J.Microbiol.37, 902–907 (1991).

    Article  CAS  Google Scholar 

  • Potin O., Rafin C., Veignie E.: Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Internat.Biodeterior.Biodegrad.54, 45–52 (2004).

    Article  CAS  Google Scholar 

  • Sanglard D., Leisola M.S.A., Fiechter A.: Role of extracellular ligninases in biodegradation of benzo[a]pyrene by Phanerochaete chrysosporium. Enzyme Microb.Technol.8, 209–212 (1986).

    Article  CAS  Google Scholar 

  • Singh D., Chen S.: The white-rot fungus Panerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl.Microbiol.Biotechnol.81, 399–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Suhara H., Daikoku C., Takata H., Suzuki S., Matsufuji Y., Sakai K., Kondo R.: Monitoring of white-rot fungus during bioremediation of polychlorinated dioxin contaminated fly ash. Appl.Microbiol.Biotechnol.62, 601–607 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Swofford D.L.: PAUP: Phylogenetic analysis using parsimony; version 4.0b10. Sinauer Associates Inc., Sunderland (MA, USA) 2002.

    Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.: The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl.Acids Res.24, 4876–4882 (1997).

    Article  Google Scholar 

  • Tien M., Kirk T.K.: Lignin peroxidases of Phanerochaete chrysosporium. Meth.Enzymol.161, 238–249 (1988).

    Article  CAS  Google Scholar 

  • Verdin A., Sahraoui A.L.H., Fontaine J., Grandmougin-Ferjani A., Durand R.: Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza16, 397–405 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Vyas B.R.M., Volc J., Šašek V.: Effects of temperature on the production of manganese peroxidase and lignin peroxidase by Phanerochaete chrysosporium. Folia Microbiol.39, 19–22 (1994).

    Article  CAS  Google Scholar 

  • Wang P., Hu X., Cook S., Begonia M., Lee K.S., Hwang H.M.: Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J.Microbiol.Biotechnol.24, 2205–2212 (2008).

    Article  Google Scholar 

  • White T.J., Bruns T.D., Lee S., Taylor J.W.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322 in M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (Eds): PCR Protocols: a Guide to Methods and Applications. Academic Press, San Diego (CA, USA) 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -J. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Choi, Y.S., Kim, M.J. et al. Degrading ability of oligocyclic aromates by Phanerochaete sordida selected via screening of white rot fungi. Folia Microbiol 55, 447–453 (2010). https://doi.org/10.1007/s12223-010-0075-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0075-9

Keywords

Navigation