Skip to main content
Log in

Effective solubilization and single-step purification of Bacillus licheniformis α-amylase from insoluble aggregates

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A high level expression of thermostable α-amylase gene from Bacillus licheniformis in Escherichia coli was obtained. The recombinant enzyme was mainly produced in the form of insoluble aggregates. The enzyme was solubilized without using denaturing agents and purified to homogeneity in a single step by ion exchange chromatography. The enzyme was purified 138-fold with a final yield of 349 %; the specific activity of the purified enzyme was 1343 U/mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Botterman J., Zabeau M.: High-level production of the EcoRI endonuclease under the control of the pL promoter of bacteriophage lambda. Gene37, 229–239 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y.S.: Increased cell buoyant densities of protein overproducing Escherichia coli cells. Biochem.Biophys.Res.Commun. 111, 104–111 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Clark E.D.: Protein refolding for industrial processes. Curr.Opin.Biotechnol. 12, 202–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Crabb W.D., Mitchinson C.: Enzymes involved in the processing of starch to sugars. Trends Biotechnol. 15, 349–352 (1997).

    Article  CAS  Google Scholar 

  • Dong G., Vieille C., Savchenko A., Zeikus J.G.: Cloning, sequencing, and expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl.Environ.Microbiol. 63, 3569–3576 (1997).

    CAS  PubMed  Google Scholar 

  • Gribskov M., Burgess R.R.: Overexpression and purification of the σ subunit of Escherichia coli RNA polymerase. Gene26, 109–118 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Hockney R.C.: Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12, 456–463 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen S., Vorgias C.E., Antranikian G.: Cloning, sequencing, characterization, and expression of an extracellular α-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J.Biol.Chem. 272, 16335–16342 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kilara A., Desai M.: Enzymes, pp. 661–706, in A.L. Branen, P.M. Davidson, S. Salminen, J.H. Thorngate III (Eds): Food Additives. Marcel Dekker Inc., New York 2002.

    Google Scholar 

  • Lin L.L., Hsu W.H.: Lactose-induced expression of Bacillus sp. TS-23 amylase gene in Escherichia coli regulated by a T7 promoter. Lett.Appl.Microbiol. 24, 365–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Linden A., Niehaus F., Antranikian G.: Single-step purification of a recombinant thermostable α-amylase after solubilization of the enzyme from insoluble aggregates. J.Chromatogr. 737, 253–259 (2000).

    Article  CAS  Google Scholar 

  • van der Maarel M.J., van der Veen B., Uitdehaag J.C., Leemhuis H., Dijkhuizen L.: Properties and applications of starch-converting enzymes of the α-amylase family. J.Biotechnol. 94, 137–155 (2002).

    Article  PubMed  Google Scholar 

  • Marco J.L., Bataus L.A., Valência F.F., Ulhoa C.J., Astolfi-Filho S., Felix C.R.: Purification and characterization of a truncated Bacillus subtilis α-amylase produced by Escherichia coli. Appl.Microbiol.Biotechnol. 44, 746–752 (1996).

    CAS  PubMed  Google Scholar 

  • Marston F.A.: The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem.J. 240, 1–12 (1986).

    CAS  PubMed  Google Scholar 

  • Park C.S., Chang C.C., Kim J.Y., Ogrydziak D.M., Ryu D.D.: Expression, secretion, and processing of rice α-amylase in the yeast Yarrowia lipolytica. J.Biol.Chem. 272, 6876–6881 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Prouty W.F., Karnovsky M.J., Goldberg A.L.: Degradation of abnormal proteins in Escherichia coli. Formation of protein inclusions in cells exposed to amino acid analogs. J.Biol.Chem. 250, 1112–1122 (1975).

    CAS  PubMed  Google Scholar 

  • Rashid N., Morikawa M., Imanaka T.: An abnormally acidic TATA-binding protein from a hyperthermophilic archaeon. Gene166, 139–143 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Rashid N., Shimada Y., Ezaki S., Atomi H., Imanaka T.: Low-temperature lipase from a psychrotrophic Pseudomonas sp. strain KB700A. Appl.Environ.Microbiol.67, 4064–4069 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rashid N., Cornista J., Ezaki S., Fukui T., Atomi H., Imanaka T.: Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J.Bacteriol. 184, 777–784 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rashid N., Farooq A., Haque I., Akhtar M.: Insoluble but enzymatically active α-amylase from Bacillus licheniformis. Biologia64, 660–663 (2009).

    Article  CAS  Google Scholar 

  • Riegal E.R., Bissinger H.G.: Industrial fermentation: principles, processes and products, pp. 963–1045 in J.A. Kent (Eds): Riegal’s Handbook of Industrial Chemistry. Kluwer Academic-Plenum Publishers, New York 2003.

    Google Scholar 

  • Rudolph R., Lilie H.: In vitro folding of inclusion body proteins. FASEB J. 10, 49–56 (1996).

    CAS  PubMed  Google Scholar 

  • Schoemaker J.M., Brasnett A.H., Marston F.A.: Examination of calf prochymosin accumulation in Escherichia coli: disulphide linkages are a structural component of prochymosin-containing inclusion bodies. EMBO J. 4, 775–780 (1985)

    CAS  PubMed  Google Scholar 

  • Schofield L.R., Patchett M.L., Parker E.J.: Expression, purification, and characterization of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Pyrococcus furiosus. Protein Expr.Purif. 34, 17–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sibakov M.: High expression of Bacillus licheniformis α-amylase with a Bacillus secretion vector. Eur.J.Biochem. 155, 577–581 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Speed M.A., Wang D.I.C., King J.: Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat.Biotechnol. 14, 1283–1287 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Suominen I., Meyer P., Tilgmann C., Glumoff T., Glumoff V., Käpylä J., Mäntsälä P.: Effects of signal peptide mutations on processing of Bacillus stearothermophilus α-amylase in Escherichia coli. Microbiology141, 649–654 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Thomas J.G., Baneyx F.: Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Expr.Purif. 11, 289–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Wang L., Zhou Q., Chen H., Chu Z., Lu J., Zhang Y., Yang S.: Efficient solubilization, purification of recombinant extracellular α-amylase from Pyrococcus furiosus expressed as inclusion bodies in Escherichia coli. J.Ind.Microbiol.Biotechnol. 34, 187–192 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rashid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, N., Ahmed, N., Saleem Haider, M. et al. Effective solubilization and single-step purification of Bacillus licheniformis α-amylase from insoluble aggregates. Folia Microbiol 55, 133–136 (2010). https://doi.org/10.1007/s12223-010-0020-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0020-y

Keywords

Navigation