Skip to main content
Log in

Advanced Piezoelectric Composite Fibers with Shape Memory Polyurethane for Energy-Harvesting Applications

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

To overcome the drawbacks of previous piezoelectric composite fibers and fabrics with excessive stiffness, this paper explores the fabrication of flexible piezoelectric composite fibers using shape memory polyurethane (SMPU) and lead zirconate titanate (PZT) piezoelectric material through a melt-spinning technique. While the shape recovery performance of the PZT/SMPU composite fibers with 60% PZT content experiences a slight reduction, it still achieves a level of 64.56%. Furthermore, the composite piezoelectric fabric with 60% PZT content generates an output voltage of 70.72 mV under sinusoidal vibration conditions at 10 μm. The polymer matrix significantly enhances the flexibility of the composite material, effectively encapsulating the PZT piezoelectric material and transferring external stress to it, thereby converting mechanical energy into electrical energy. Moreover, due to the characteristics of the shape memory effect, fabrics woven from PZT/SMPU composite fibers can easily deform into various shapes. Consequently, flexible piezoelectric composite fabrics offer superior comfort to the human body while being capable of bending into multiple forms, enabling the conversion of vibrational energy into electrical energy. This underscores the promising applications of flexible composite fabrics in the field of energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data are available from the corresponding authors upon reasonable request.

References

  1. X. Guan, H. Chen, H. Xia, Y. Fu, Y. Qiu, Q.-Q. Ni, J. Intell. Mater. Syst. Struct. 31, 956 (2020)

    Article  CAS  Google Scholar 

  2. Q.-Q. Ni, X. Guan, Y. Zhu, Y. Dong, H. Xia, Compos. Sci. Technol. 200, 108478 (2020)

    Article  CAS  Google Scholar 

  3. X.Y. Guan, H.R. Chen, H. Xia, Y.Q. Fu, J.M. Yao, Q.Q. Ni, Compos. Part B-Eng. 197, 108169 (2020)

    Article  CAS  Google Scholar 

  4. M.S.H. Al-Furjan, Y. Yang, A. Farrokhian, X. Shen, R. Kolahchi, D.K. Rajak, Polym. Compos. 43, 282 (2022)

    Article  CAS  Google Scholar 

  5. M.S. Ramasamy, A. Rahaman, B. Kim, Compos. Sci. Technol. 203, 108570 (2021)

    Article  Google Scholar 

  6. M.S.H. Al-Furjan, X.S. Kong, L. Shan, G.S. Jafari, A. Farrokhian, X. Shen, R. Kolahchi, D.K. Rajak, Polym. Compos. 43, 7390 (2022)

    Article  CAS  Google Scholar 

  7. D. Grzybek, D. Kata, W. Sikora, B. Sapinski, P. Micek, H. Pamula, J. Huebner, P. Rutkowski, Materials 13, 4925 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. J.S. Kim, I.W. Nam, H.K. Lee, Compos. Struct. 241, 112072 (2020)

    Article  Google Scholar 

  9. W.J. Ding, W.W. Xu, Z.J. Dong, Y.Q. Liu, Q. Wang, T. Shiotani, Ceram. Int. 47, 29681 (2021)

    Article  CAS  Google Scholar 

  10. H. Xu, B.W. Shang, X.B. Lv, S.Y. Hu, Mater. Today Commun. 36, 106462 (2023)

    Article  CAS  Google Scholar 

  11. J. Khaliq, T. Hoeks, P. Groen, J. Manuf. Mater. Process. 3, 77 (2019)

    CAS  Google Scholar 

  12. M.I. Beyaz, N. Ahmed, Ferroelectrics 585, 187 (2021)

    Article  ADS  CAS  Google Scholar 

  13. Z. Zhao, Y. Dai, S.X. Dou, J. Liang, Mater. Today Energy 20, 100690 (2021)

    Article  CAS  Google Scholar 

  14. Q. Wang, T. Ruan, Q.D. Xu, B. Yang, J.Q. Liu, Nano Energy 89, 106324 (2021)

    Article  CAS  Google Scholar 

  15. J.Y. Tian, F.Y. Jiang, Q.H. Zeng, M. PourhosseiniAsl, C.Z. Han, K.L. Ren, IEEE Sens. J. 23, 6264 (2023)

    Article  ADS  CAS  Google Scholar 

  16. Z.G. Yang, L.T. Dong, M. Wang, G.J. Liu, X.B. Li, Y. Li, Sens. And Actuator A-Phys. 347, 113909 (2022)

    Article  CAS  Google Scholar 

  17. C. Liang, C.L. Zhang, W.Q. Chen, J.S. Yang, Mater. Res. Express 6, 125919 (2019)

    Article  CAS  Google Scholar 

  18. J. Kharade, H. Vasquez, K. Lozano, Emerg. Mater. 5, 187 (2022)

    Article  Google Scholar 

  19. X.X. Du, Z. Zhou, Z. Zhang, L.Q. Yao, Q.L. Zhang, H. Yang, J. Adv. Ceram. 11, 331 (2022)

    Article  CAS  Google Scholar 

  20. H.Y. Jia, H.R. Li, B. Lin, Y. Hu, L. Peng, D.Y. Xu, X. Cheng, Sens. Actuator A-Phys. 324, 112672 (2021)

    Article  CAS  Google Scholar 

  21. R.F. Yue, S.G. Ramaraj, H.L. Liu, D. Elamaran, V. Elamaran, V. Gupta, S. Arya, S. Verma, S. Satapathi, Y. Hayawaka, X. Liu, J. Alloy. Compd. 918, 165653 (2022)

    Article  CAS  Google Scholar 

  22. Y. Liu, L. Ding, L. Dai, X. Gao, H. Wu, S. Wang, C. Zhuang, L. Cai, Z. Liu, L. Liu, J. Zhang, and Y. Wang, Adv. Funct. 32, 2209297 (2022)

  23. G. Kim, M.K. Seo, N. Choi, Y.I. Kim, K.B. Kim, Int. J. Precis. Eng. Manuf. 20, 1007 (2019)

    Article  Google Scholar 

  24. T. Liu, R. Li, J.Z. Pei, X.Y. Xing, Q.Q. Guo, Mater. Chem. Phys. 239, 122063 (2020)

    Article  Google Scholar 

  25. R. Samyal, A.K. Bagha, R. Bedi, S. Bahl, K.K. Saxena, S. Sehgal, Mater. Res. Express 8, 075302 (2021)

    Article  ADS  CAS  Google Scholar 

  26. H. Chen, H. Xia, Y. Qiu, Q.-Q. Ni, Compos. Sci. Technol. 163, 105 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Beijing Scholar Program (RCQJ20303), Beijing Institute of Fashion Technology Young Faculty Initiation Program (BIFTXJ202220), Beijing Institute of Fashion Technology Special Funds for High-level Teaching Staff Construction (BIFT GCC202302) and National Key R&D Program of China (Grant No. 2022YFC3006100).

Funding

Beijing Scholar Program, RCQJ20303, Xiaoyu Guan, Beijing Institute of Fashion Technology Young Faculty Initiation Program, BIFTXJ202220, Xiaoyu Guan, Beijing Institute of Fashion Technology Special Funds for High-level Teaching Staff Construction, BIFT GCC202302, Xiaoyu Guan and National Key R&D Program of China 2022YFC3006100, Guan Xiaoyu.

Author information

Authors and Affiliations

Authors

Contributions

YH: conceptualization. CL: writing—reviewing and editing, formal analysis. AL: writing—resources, funding acquisition. XW: project administration. HZ: visualization. XG: supervision, validation, visualization, writing—reviewing and editing, resources, writing—original draft, investigation.

Corresponding author

Correspondence to Xiaoyu Guan.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Lou, C., Li, A. et al. Advanced Piezoelectric Composite Fibers with Shape Memory Polyurethane for Energy-Harvesting Applications. Fibers Polym 25, 415–424 (2024). https://doi.org/10.1007/s12221-023-00434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00434-y

Keywords

Navigation