Skip to main content
Log in

Study on the Mechanical Properties and Microstructure of Geogrid Under Different Materials and Temperatures

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In response to the environmental problems caused by the difficulty of direct degradation of the raw materials used in traditional geogrids and the impact of different temperatures on the mechanical properties of geogrids in practical engineering applications, based on 3D printing technology, polylactic acid (PLA), carbon fiber reinforced polylactic acid (PLA/CF), and thermoplastic polyurethane (TPU) geogrids were fabricated. The 3D printed geogrids and the fiberglass geogrids used in the actual project were tested in indoor tensile tests under different temperature conditions. The mechanical properties of the geogrids of the four kinds of materials and six kinds of temperature were analyzed. The microstructure of the geogrids after tensile tests was investigated based on scanning electron microscopy technology to further analyze the effects of different materials and temperatures on the mechanical properties of the geogrids. The results showed that the tensile strength of PLA/CF geogrids and PLA geogrids decreased with increasing temperature. The tensile strength of fiberglass geogrids increased with rising temperatures. The tensile strength of PLA/CF geogrids was significantly better than PLA geogrids. Due to the addition of carbon fiber in PLA, PLA/CF can bear more tensile force at high temperatures. With the increase of temperature, the elongation at break of PLA/CF geogrids and fiberglass geogrids increased, but the elongation at break of PLA geogrids decreased. The elongation at break of PLA/CF geogrids was significantly lower than that of PLA geogrids. TPU geogrids had high tensile capacity in a high-temperature environment, and they also had high elasticity and more significant elongation at break, which was not suitable to be used as geogrid material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Leshchinsky, B. Kang, J. Han, and H. Ling, Transp. Infrastruct. Geotechnol., 1, 129 (2014).

    Article  Google Scholar 

  2. S. Balakrishnan and B. V. S. Viswanadham, Geotext. Geomembr., 44, 95 (2016).

    Article  Google Scholar 

  3. T. M. Allen and R. J. Bathurst, Can. Geotech. J., 51, 16 (2014).

    Article  Google Scholar 

  4. T. M. Allen and R. J. Bathurst, J. Geotech. Geoenviron. Eng., 140, 217 (2014).

    Article  Google Scholar 

  5. Y. Xie and B. Leshchinsky, Geotext. Geomembr., 43, 128 (2015).

    Article  CAS  Google Scholar 

  6. H. Yuan, X. H. Bai, H. H. Zhao, and J. R.Wang, Adv. Civ. Eng., doi: https://doi.org/10.1155/2020/8839919 (2020).

  7. Q. B. Wang, L. Xu, J. X. Zhang, R. S. Lv, T. T. Wang, Z. J. Hu, Y. Bai, Y. C. Kong, F. Xie, and L. Y. Tang, J. Test. Eval., 45, 61 (2017).

    Google Scholar 

  8. R. Hegazy, G. M. Mahmoud, and E. H. Hasan, Adv. Polym. Technol., 37, 1185 (2016).

    Article  Google Scholar 

  9. C. W. Hsieh and C. K. Lin, Geotech. Test. J., 27, 111 (2004).

    Article  Google Scholar 

  10. T. Chantachot, W. Kongkitkul, and F. Tatsuoka, Int. J. Geomate., 10, 1869 (2016).

    Google Scholar 

  11. H. I. Ling, Y. Mohri, and T. Kawabata, J. Geotech. Geoenviron. Eng., 124, 782 (1998).

    Article  Google Scholar 

  12. T. Y. Liu, Y. Xin, X. Z. Liu, B. Wu, and M. C. Xiang, Chin. J. Biotechnol., doi: https://doi.org/10.13345/j.cjb.200624 (2021).

  13. J. Chen, W. X. Fu, F. Dai, and J. H. Deng, Rock Soil Mech., 38, 174 (2017).

    Google Scholar 

  14. L. L. Zhang, H. Wen, and Z. W. Zhang, Chin. J. Rock Mech. Eng., 33, 3829 (2014).

    Google Scholar 

  15. A. Cislaghi, P. Sala, G. Borgonovo, C. Gandolfi, and G. B. Bischetti, Sustainability, doi: https://doi.org/10.3390/su13052585 (2021).

  16. A. Hegde and T. G. Sitharam, J. Mater. Civ. Eng., 27, 04014256–1 (2015).

    Article  Google Scholar 

  17. F. Ye and W. X. Fu, J. Mater. Civ. Eng., 30, 05017004–1 (2018).

    Article  Google Scholar 

  18. B. Lu, D. Li, and X. Tian, Engineering, 1, 85 (2015).

    Article  CAS  Google Scholar 

  19. D. Stathas, J. P. Wang, and H. I. Ling, Geotext. Geomembr., doi: https://doi.org/10.1016/j.geotexmem.2017.07.006 (2017).

  20. G. J. Fowmes, N. Dixon, L. W. Fu, and C. A. Zaharescu, Geotext. Geomembr., 45, 674 (2017).

    Article  Google Scholar 

  21. A. Lanzotti, M. Martorelli, S. Maietta, S. Gerbino, F. Penta, and A. Gloria, Procedia CIRP, 79, 143 (2019).

    Article  Google Scholar 

  22. A. Pellis, L. Silvestrini, D. Scaini, J. M. Coburn, L. Gardossi, D. L. Kaplan, E. H. Acero, and G. M. Guebitz, Process Biochem., 59, 77 (2016).

    Article  Google Scholar 

  23. J. Chakravarty, M. F. Rabbi, V. Chalivendra, T. Ferreira, and C. J. Brigham, Int. J. Biol. Macromol., 151, 1213 (2019).

    Article  Google Scholar 

  24. K. Adamska, A. Voelkel, and A. Berlińska, Biomed. Anal., 127, 202 (2016).

    Article  CAS  Google Scholar 

  25. M. Abu Ghalia and Y. Dahman, Polym. Test., 61, 114 (2017).

    Article  CAS  Google Scholar 

  26. M. Ejaz, M. M. Azad, A. Ur, R. Shah, and J. I. Song, Fiber. Polym., 21, 2635 (2020).

    Article  CAS  Google Scholar 

  27. Y. P. Hao, Y. Li, Z. G. Liu, X. Y. Yan, Y. Tong, and H. Zhang, Fiber. Polym., 20, 1766 (2019).

    Article  CAS  Google Scholar 

  28. M. P. Arrieta, M. D. Sámper, J. Lopez, and A. Jiménez, Polym. Environ., 22, 460 (2014).

    Article  CAS  Google Scholar 

  29. F. Wang, G. Wang, F. Ning, and Z. Zhang, Addit. Manuf., doi: https://doi.org/10.1016/j.addma.2020.101661 (2020).

  30. C. Hu, J. Q. Dong, J. J. Luo, Q. H. Qin, and G. Y. Sun, Compos. Pt. B-Eng., doi: https://doi.org/10.1016/j.compositesb.2020.108400 (2020).

  31. K. L. Zhu, H. S. Tan, Y. J. Wang, C. H. Liu, X. M. Ma, J. Wang, and H. N. Xing, Fiber. Polym., 20, 839 (2019).

    Article  CAS  Google Scholar 

  32. L. P. Li, D. Y. Wu, and M. He, Fiber. Polym., 21, 583 (2020).

    Article  CAS  Google Scholar 

  33. N. Maqsood and M. Rimaauskas, Compos. Part C: Open Access, doi: https://doi.org/10.1016/j.jcomc.2021.100112 (2021).

  34. R. Matsuzaki, M. Ueda, M. Namiki, T. K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, and Y. Hirano, Sci. Rep-UK, doi: https://doi.org/10.1038/srep23058 (2016).

  35. X. Y. Tian, T. F. Liu, C. C. Yang, Q. R. Wang, and D. C. Li, Compos. Pt. A-Appl. Sci. Manuf., 88, 198 (2016).

    Article  CAS  Google Scholar 

  36. A. Vcg, A. Prk, and B. Hbk, Mater. Today: Proc., 23, 221 (2020).

    Google Scholar 

  37. Y. D. Shi, Y. H. Cheng, Y. F. Chen, K. Zhang, J. B. Zeng, and M. Wang, Polym. Test., 62, 1 (2017).

    Article  CAS  Google Scholar 

  38. Q. F. Jing, Q. Liu, L. Li, Z. L. Dong, and V. V. Silberschmidt, Compos. Pt. B-Eng., 89, 1 (2016).

    Article  CAS  Google Scholar 

  39. A. M. N. Azammi, S. M. Sapuan, M. R. Ishak, and M. T. H. Sultan, Fiber. Polym., 19, 446 (2018).

    Article  Google Scholar 

  40. A. Huang, X. F. Peng, and L. S. Turng, Polymer, 134, 263 (2018).

    Article  CAS  Google Scholar 

  41. K. N. Gunasekaran, V. Aravinth, C. Kumaran, K. Madhankumar, and S. P. Kumar, Mater. Today:. Proc., doi: https://doi.org/10.1016/j.matpr.2020.09.041 (2020).

  42. N. Najafi, M. C. Heuzey, P. J. Carreau, and P. M. Wood-Adams, Polym. Degrad. Stab., 97, 554 (2012).

    Article  CAS  Google Scholar 

  43. G. Scetta, N. Selles, P. Heuillet, M. Ciccotti, and C. Creton, Polym. Test., doi: https://doi.org/10.1016/j.polymertesting.2021.107140 (2021).

  44. L. F. Cai, C. L. Wang, H. W. Chen, H. Qian, Z. Y. Lin, and X. C. Zhang, Appl. Nanosci., 10, 51 (2019).

    Article  Google Scholar 

  45. A. Fk, B. Ss, B. Yk, and D. Utc, Cleaner Eng. Technol., doi: https://doi.org/10.1016/j.clet.2021.100251 (2021).

  46. F. D. Kopinke and K. Mackenzie, J. Anal. Appl. Pyrolysis, 40–1, 43 (1997).

    Article  Google Scholar 

  47. B. Wu, R. Wang, G. Zheng, and C. Zhou, Fiber. Polym., 21, 148 (2020).

    Article  CAS  Google Scholar 

  48. S. Bhagia, R. R. Lowden, D. Erdman. Iii, M. Rodriguez, and A. J. Ragauskas, Appl. Mater. Today, doi: https://doi.org/10.1016/j.apmt.2020.100832 (2020).

  49. S. C. Clarizio and R. A. Tatara, J. Polym. Environ., 20, 638 (2012).

    Article  CAS  Google Scholar 

  50. R. L. Ferreira, I. C. Amatte, T. A. Dutra, and D. Burger, Compos. Pt. B-Eng., 124, 88 (2017).

    Article  CAS  Google Scholar 

  51. K. K. Guduru and G. Srinivasu, Mater. Today: Proc., 33, 5403 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO. 51778353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junli Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhang, H., Xie, X. et al. Study on the Mechanical Properties and Microstructure of Geogrid Under Different Materials and Temperatures. Fibers Polym 23, 1753–1762 (2022). https://doi.org/10.1007/s12221-022-4677-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4677-z

Keywords

Navigation