Skip to main content
Log in

Development of Efficient Antimicrobial Zinc Oxide Modified Montmorillonite Incorporated Polyacrylonitrile Nanofibers for Particulate Matter Filtration

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ultrafine particulate matter and airborne microorganisms present in atmosphere are responsible for affecting the human health and the global climate. The development of bifunctional membranes which can simultaneously filter the particulate matter (PM) and inhibit the growth of microorganisms is the need of the hour. In this study, electrospun polyacrylonitrile (PAN)/zinc oxide modified montmorillonite (ZnO-Mt) nanofibrous nanocomposites with varying concentrations of ZnO-Mt ranging from 0.25 % to 1.00 % (w/w) have been prepared to be used as filtration membranes. The addition of ZnO-Mt in PAN dope solution affects its viscosity and ionic conductivity. The surface morphology of the nanofibrous membranes was studied using field emission scanning electron microscopy. The average diameter of PAN nanofibers and its nanocomposites was found to be between 247 nm to 468 nm. An increase in porosity, air permeability and water vapor transmission rate of the nanofibrous membranes was observed with an increase in concentration of ZnO-Mt in PAN nanofibers upto 0.75 %. The addition of ZnO-Mt enhanced the thermal stability of PAN nanofibrous membranes from 188 °C to 310 °C. The filtration efficiency of the nanofibrous membranes was evaluated using environment particle air monitor instrument. PAN/ZnO-Mt nanofibrous membranes having 0.75 % w/w ZnO-Mt exhibited filtration efficiency of 99.6 %. The antimicrobial property of PAN/ZnO-Mt nanofibrous membranes was studied against S. aureus and E. coli bacterial strains showing 98.85 % and 96.23 % antibacterial activity respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Apte, J. D. Marshall, A. J. Cohen, and M. Brauer, Environ. Sci. Technol., 49, 8057 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. M. Xie, M. P. Hannigan, and K. C. Barsanti, Environ. Sci. Technol., 48, 9053 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. L. P. Naeher, K. R. Smith, B. P. Leaderer, L. Neufeld, and D. T. Mage, Environ. Sci. Technol., 35, 575 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. M. C. Turner, D. Krewski, C. A. Pope, Y. Chen, S. M. Gapstur, and M. J. Thun, Am. J. Respir. Crit. Care Med., 184, 1374 (2011).

    Article  PubMed  Google Scholar 

  5. L. Jing, K. Shim, C. Y. Toe, T. Fang, C. Zhao, R. Amal, K. N. Sun, J. H. Kim, and Y. H. Ng, ACS Appl. Mater. Interfaces, 8, 7030 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. M. H. Mohraz, F. Golbabaei, I. J. Yu, M. A. Mansournia, A. S. Zadeh, and S. F. Dehghan, Int. J. Environ. Sci. Technol., 16, 681 (2019).

    Article  CAS  Google Scholar 

  7. J. Douwes, P. Thorne, N. Pearce, and D. Heederik, Ann. Occup. Hyg., 47, 187 (2003).

    CAS  PubMed  Google Scholar 

  8. K. Desai, K. Kit, J. Li, P. Michael Davidson, S. Zivanovic, and H. Meyer, Polymer (Guildf), 50, 3661 (2009).

    Article  CAS  Google Scholar 

  9. L. Chen, Ph.D. Thesis, MIT, Cambridge MA, 2009.

  10. H. Liu, C. Cao, J. Huang, Z. Chen, G. Chen, and Y. Lai, Nanoscale, 12, 437 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. S. Yan, Y. Yu, R. Ma, and J. Fang, Polym. Adv. Technol., 30, 1635 (2019).

    Article  CAS  Google Scholar 

  12. M. Cao, F. Gu, C. Rao, J. Fu, and P. Zhao, Sci. Total Environ., 666, 1011 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. S. A. Hosseini and H. V. Tafreshi, Powder Technol., 201, 153 (2010).

    Article  CAS  Google Scholar 

  14. X. Mao, Y. Si, Y. Chen, L. Yang, F. Zhao, B. Ding, and J. Yu, RSC Adv., 2, 12216 (2012).

    Article  CAS  Google Scholar 

  15. S. Zhang, H. Liu, X. Yin, J. Yu, and B. Ding, ACS Appl. Mater. Interfaces, 8, 8086 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. J. Choi, B. J. Yang, G. N. Bae, and J. H. Jung, ACS Appl. Mater. Interfaces, 7, 25313 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Liu, M. Park, B. Ding, J. Kim, M. El-Newehy, S. S. Al-Deyab, and H. Y. Kim, Fiber. Polym., 16, 629 (2015).

    Article  CAS  Google Scholar 

  18. C. Liu, P. C. Hsu, H. W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, Nat. Commun., 6, 6205, (2015).

    Article  CAS  PubMed  Google Scholar 

  19. S. Lee, A. R. Cho, D. Park, J. K. Kim, K. S. Han, I. J. Yoon, M. H. Lee, and J. Nah, ACS Appl. Mater. Interfaces, 11, 2750 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. R. Balgis, C. W. Kartikowati, T. Ogi, L. Gradon, L. Bao, K. Seki, and K. Okuyama, Chem. Eng. Sci., 137, 947 (2015).

    Article  CAS  Google Scholar 

  21. B. Wang, Z. Sun, Q. Sun, J. Wang, Z. Du, C. Li, and X. Li, Environ. Pollut., 249, 851 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. M. Hashmi, S. Ullah, and I. S. Kim, J. CRBIOT, 1, 1 (2019).

    Google Scholar 

  23. Y. Wang, X. Zhao, L. Duan, F. Wang, H. Niu, W. Guo, and A. Ali, Mater. Sci. Semicond. Processing, 29, 372 (2015).

    Article  CAS  Google Scholar 

  24. A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, Appl. Phys. Lett., 84, 2635 (2004).

    Article  Google Scholar 

  25. Z. Fan and J. G. Lu, J. Nanosci. Nanotechnol., 5, 1561 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad, Nano-Micro Lett., 7, 219 (2015).

    Article  CAS  Google Scholar 

  27. J. P. Kumar, P. V. R. K. Ramacharyulu, G. K. Prasad, and B. Singh, Appl. Clay Sci., 116–117, 263 (2015).

    Article  Google Scholar 

  28. A. Zyoud, W. Jondi, N. AlDaqqah, S. Asaad, N. Qamhieh, A. R. Hajamohideen, M. H. S. Helal, H. Kwon, and H. S. Hilal, Solid State Sci., 74, 131 (2017).

    Article  CAS  Google Scholar 

  29. C. M. Srivastava and R. Purwar, Mater. Sci. Eng. C, 68, 276 (2016).

    Article  CAS  Google Scholar 

  30. A. Sampling, “EPAM-5000”, https://www.skcinc.com/catalog/pdf/instructions/1516.pdf (Accesssed April 15, 2021).

  31. R. Purwar, P. Mishra, and M. Joshi, AATCC Rev., 8, 36 (2008).

    CAS  Google Scholar 

  32. R. Purwar, K. S. Goutham, and C. M. Srivastava, Fiber. Polym., 17, 1206 (2016).

    Article  CAS  Google Scholar 

  33. R. Al-Attabi, Y. Morsi, W. Kujawski, L. Kong, J. A. Schütz, and L. F. Dumée, Sep. Purif. Technol., 215, 500 (2018).

    Article  Google Scholar 

  34. S. Fotiadou, C. Karageorgaki, K. Chrissopoulou, K. Karatasos, I. Tanis, D. Tragoudaras, B. Frick, and S. H. Anastasiadis, Macromolecules, 46, 2842 (2013).

    Article  CAS  Google Scholar 

  35. C. Philippe and B. Claire in “Rubber Nanocomposites: Preparations, Properties and Applications” (S. Thomas and R. Stephen Eds.), pp.353–390, Wiley, Chichester, 2010.

  36. S. Ahmadzadeh, A. Nasirpour, J. Keramat, and S. Desobry, Cellulose, 22, 1829 (2015).

    Article  CAS  Google Scholar 

  37. S. Sikkanthar, S. Karthikeyan, S. Selvasekarapandian, D. V. Pandi, S. Nithya, and C. Sanjeeviraja, J. Solid State Electrochem., 19, 987 (2015).

    Article  CAS  Google Scholar 

  38. R. Al-Attabi, L. F. Dumée, J. A. Schütz, and Y. Morsi, Sci. Total Environ., 625, 706 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. R. Al-Attabi, L. F. Dumée, L. Kong, J. A. Schütz, and Y. Morsi, Adv. Eng. Mater., 20, 1700572 (2018).

    Article  Google Scholar 

  41. H. J. Haroosh, D. S. Chaudhary, and Y. Dong, J. Appl. Polym. Sci., 124, 3930 (2012).

    Article  CAS  Google Scholar 

  42. S. Almuhamed, M. Bonne, N. Khenoussi, J. Brendle, L. Schacher, B. Lebeau, and D. C. Adolphe, J. Ind. Eng. Chem., 35, 146 (2015).

    Article  Google Scholar 

  43. M. Y. Haddad and H. F. Alharbi, J. Appl. Polym. Sci., 136, 47209 (2019).

    Article  Google Scholar 

  44. X. Hou, X. Yang, L. Zhang, E. Waclawik, and S. Wu, Mater. Des., 31, 1726 (2010).

    Article  CAS  Google Scholar 

  45. R. Jalili, M. Morshed, and S. A. H. Ravandi, J. Appl. Polym. Sci., 101, 4350 (2006).

    Article  CAS  Google Scholar 

  46. S. F. Fennessey and R. J. Farris, Polymer, 45, 4217 (2004).

    Article  CAS  Google Scholar 

  47. Z. M. Wang in “Nanotechnology in Textiles Theory and applications”, 1st ed. (R. Mishra and J. Militky), pp.311–351, Elsevier Ltd., 2010.

  48. K. Stevens and M. Fuller in “Textile-led Design for the Active Ageing Population”, 1st ed. (J. McCann and D. Bryson), pp.117–138, Elsevier Ltd., 2015.

  49. R. Roche and F. Yalcinkaya, ChemistryOpen, 8, 97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J. Wang, Y. Li, H. Tian, J. Sheng, J. Yu, and B. Ding, RSC Adv., 4, 61068 (2014).

    Article  CAS  Google Scholar 

  51. R. Zhang, B. Liu, A. Yang, Y. Zhu, C. Liu, G. Zhou, J. Sun, Po-Chun Hsu, W. Zhao, D. L. Y. Liu, A. Pei, J. Xie, W. Chen, J. Xu, Y. Jin, T. Wu, X. Huang, and Y. Cui, Nano Letters, 18, 1130 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. H. Liu, J. Huang, J. Mao, Z. Chen, G. Chen, and Y. Lai, iScience, 19, 214 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. R. Al-Attabi, Y. Morsi, J. A. Schütz, and L. F. Dumée, Sci. Total Environ., 647, 725 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. J. Mao, Y. Tang, Y. Wang, J. Huang, X. Dong, Z. Chen, and Y. Lai, iScience, 16, 133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. T. Seil and T. J. Webster, Int. J. Nanomedicine, 7, 2767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. L. C. Ann, S. Mahmud, S. K. M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, and R. A. Rahman, Appl. Surf. Sci., 292, 405 (2014).

    Article  CAS  Google Scholar 

  57. N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, FEMS Microbiol. Lett., 279, 71 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. M. Li, L. Zhu, and D. Lin, Environ. Sci. Technol., 45, 1977 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. R. Jalal, E. K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, and P. Nancarrow, Mater. Chem. Phys., 121, 198 (2010).

    Article  CAS  Google Scholar 

  60. K. T. Shalumon, K. H. Anulekha, S. V. Nair, S. V. Nair, K. P. Chennazhi, and R. Jayakumar, Int. J. Biol. Macromol., 49, 247 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial support received from Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India (EMR/2017/002833) and Prof. S K Singh and Dr. Rajeev Mishra from Department of Environment Engineering, DTU for particulate matter filtration efficiency test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roli Purwar.

Electronic Supplementary Material (ESM)

12221_2021_914_MOESM1_ESM.pdf

Development of efficient antimicrobial zinc oxide modified montmorillonite incorporated polyacrylonitrile nanofibers for particulate matter filtration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, P., Purwar, R. Development of Efficient Antimicrobial Zinc Oxide Modified Montmorillonite Incorporated Polyacrylonitrile Nanofibers for Particulate Matter Filtration. Fibers Polym 22, 2726–2737 (2021). https://doi.org/10.1007/s12221-021-0914-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0914-0

Keywords

Navigation