Skip to main content
Log in

Wear Comfort of Heat Storage/Release Fabrics Containing Al2O3/Graphite Yarns

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study examined the wear comfort properties of Al2O3/graphite-imbedded fabrics with sheath/core and dispersed PET yarns. The moisture absorption and drying characteristics were measured by a moisture management tester (MMT) method, and thermal property by a KES-F7 system. The results were discussed in terms of the ceramic-imbedded yarn structure, which was verified by the far-infrared emissivity and the maximum surface temperature measured by a light heat emission apparatus. In addition, the tactile hand feel of the fabric specimens was estimated from the fabric mechanical properties by a fabric assurance simple testing (FAST) system. The water absorption and drying properties of the Al2O3/graphite sheath/core yarn fabric were inferior to those of the dispersed yarn fabric, and the heat retention rate was lower than that of the dispersed yarn fabric with lower thermal conductivity and higher Qmax value. These results revealed that the Al2O3/graphite sheath/core yarn fabric has inferior wear comfort properties compared to those of the dispersed yarn fabric, which was attributed to the lower heat release from the core part of the sheath/core yarn than that from the dispersed yarn with Al2O3/graphite particles distributed over the whole yarn cross-section. This was further verified by the lower emissivity and maximum surface temperature of the sheath/core yarn fabric than those of the dispersed yarn fabric. However, the sheath/core yarn fabric exhibited slightly a softer tactile hand feel compared to the dispersed yarn fabric. Both sheath/core and dispersed yarn fabrics exhibited better wear comfort properties than the regular PET fabric did, but showed an uncomfortable tactile hand feel compared to the regular PET fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Xu, T. Shyr, and M. Yao, Text. Res. J., 77, 513 (2007).

    Article  CAS  Google Scholar 

  2. D. M. Anderson, J. R. Fessler, M. A. Pooley, S. Seidel, M. R. Hamblin, H. W. Beckham, and J. F. Brennan III, Bio Medical Opt. Express, 8, 1698 (2017).

    Article  CAS  Google Scholar 

  3. M. A. Pooley, D. M. Anderson, H. W. Beckham, and J. F. Brennan III, Opt. Express, 24, 10556 (2016).

    Article  CAS  Google Scholar 

  4. T. Furata, Y. Shimizu, and Y. Kondo, Text. Res. J., 66, 123 (1996).

    Article  Google Scholar 

  5. G. W. Bahng and J. D. Lee, Text. Res. J., 84, 1220 (2014).

    Article  Google Scholar 

  6. C. F. J. Kuo, C. C. Fan, T. L. Su, S. H. Chen, and W. L. Lan, Text. Res. J., 86, 1677 (2016).

    Article  Google Scholar 

  7. H. A. Kim and S. J. Kim, Autex. Res. J., 17, 142 (2017).

    Article  CAS  Google Scholar 

  8. H. A. Kim and S. J. Kim, Autex. Res. J., 19, 165 (2019).

    Article  CAS  Google Scholar 

  9. C. A. Lin, T. C. An, and Y. H. Hsu, Pol. Plastics Tech. Eng., 46, 1073 (2007).

    Article  CAS  Google Scholar 

  10. J. H. Lin, C. L. Huang, Z. I. Lin, and C. W. Lou, J. Com. Mat., 50, 2099 (2016).

    Article  CAS  Google Scholar 

  11. C. M. Lin and C. W. Chang, Text. Res. J., 78, 555 (2008).

    Article  CAS  Google Scholar 

  12. J. H. Lin, J. C. Jhang, T. A. Lin, S. Y. Huang, Y. S. Chen, and C. W. Lou, Fiber. Polym., 18, 597 (2017).

    Article  CAS  Google Scholar 

  13. Entergris, Properties and Characteristics of Graphite, https://www.entegris.com/content/dam/web/resources/brochures/brochure-properties-and-characteristics-of-graphite-7329.pdf (Accessed May 20, 2020).

  14. H. A. Kim and S. J. Kim, Text. Res. J., 89, 1394 (2019).

    Article  CAS  Google Scholar 

  15. Commonwealth Scientific and Industrial Research Organization (Australia) Division of Wool Technology, “Wool Technology”, p.29, Geelong, Vic.: CSIRO, Australia, 1989.

    Google Scholar 

  16. G. Supuren, N. Oglakcioglu, N. Ozdil, and A. Marmarali, Text. Res. J., 81, 1320 (2011).

    Article  CAS  Google Scholar 

  17. M. H. Shim, C. H. Park, and H. S. Shim, Text. Res. J., 79, 1557 (2009).

    Article  CAS  Google Scholar 

  18. S. Y. Yeo, D. H. Lee, and E. A. Kim, J. Kor. Soc. Clo. Text., 22, 515 (1998).

    Google Scholar 

  19. O. K. Kwon, Heat Delivery Mechanism of Textile Products and Development Trend of Keeping Warmth Functionalized Product, http://www.textopia.or.kr/new/index.do (Accessed October 20, 2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ah Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.A. Wear Comfort of Heat Storage/Release Fabrics Containing Al2O3/Graphite Yarns. Fibers Polym 23, 554–564 (2022). https://doi.org/10.1007/s12221-021-0312-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0312-7

Keywords

Navigation