Skip to main content
Log in

Air Recirculation and Its Effect on Microfiber Spinning in Blunt-Die Melt Blowing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the present work, approaches of the Computational Fluid Dynamics (CFD) simulation, the Particle Image Velocimetry (PIV) measurement, and the spinning experiment were applied to investigate the phenomenon of air recirculation in blunt-die melt-blown airflow. Firstly, the characteristics of air recirculation were explored by CFD simulation. The simulation results predicted that the air recirculation generated a lateral air velocity along the nose-piece direction. Then, the air circulation was experimental verified by using PIV technique. The PIV results confirmed the predicted conclusions of CFD simulation. Finally, the effect of air recirculation on the microfiber spinning during the melt-blown process was experimentally investigated by a spinning experiment using a blunt die with nose-piece width of 2.56 mm. The spinning results indicated that the air circulation had a tendency of splitting the normal polymeric stream, which played negative effect on the continuity of microfiber spinning. This work is expected to provide some clues to melt-blown die design and the quality control of nonwoven products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Drabek and M. Zatloukal, Phys. Fluids, 31, 091301 (2019).

    Article  Google Scholar 

  2. N. P. Deng, H. S. He, J. Yan, Y. X. Zhao, E. B. Ticha, Y. Liu, W. M. Kang, and B. W. Cheng, Polymer, 165, 174 (2019).

    Article  CAS  Google Scholar 

  3. C. Burger, B. S. Hsiao, and B. Chu, Annu. Rev. Mater. Res., 36, 333 (2006).

    Article  CAS  Google Scholar 

  4. R. Nanjundappa and G. S. Bhat, J. Appl. Polym. Sci., 98, 2355 (2005).

    Article  CAS  Google Scholar 

  5. D. Hietel and N. Marheineke, Proc. Appl. Math. Mech., 5, 667 (2005).

    Article  Google Scholar 

  6. W. L. Han and X. H. Wang, J. Appl. Polym. Sci., 123, 2511 (2012).

    Article  CAS  Google Scholar 

  7. K. Meng, X. H. Wang, and X. B. Huang, J. Appl. Polym. Sci., 108, 2523 (2008).

    Article  CAS  Google Scholar 

  8. K. L. Jin, A. Banerji, D. Kitto, F. S. Bates, and C. J. Ellison, ACS Appl. Mater. Inter., 11, 12863 (2019).

    Article  CAS  Google Scholar 

  9. L. Cui, C. L. Zhou, P. Zhu, C. H. Tsou, W. J. Yang, and J. T. Yeh, J. Appl. Polym. Sci., 125, E158 (2012).

    Article  CAS  Google Scholar 

  10. J. Song, F. Lu, B. W. Cheng, X. Y. Hu, and C. Ma, Fiber. Polym., 15, 291 (2014).

    Article  CAS  Google Scholar 

  11. H. M. Xiao, J. Y. Gui, G. J. Chen, and C. P. Xiao, J. Appl. Polym. Sci., 132, 42807 (2015).

    Google Scholar 

  12. M. A. J. Uyttendaele, and R. L. Shambaugh, Ind. Eng. Chem. Res., 28, 1735 (1989).

    Article  CAS  Google Scholar 

  13. B. Majumdar and R. L. Shambaugh, Ind. Eng. Chem. Res., 30, 1300 (1991).

    Article  CAS  Google Scholar 

  14. B. D. Tate and R. L. Shambaugh, Ind. Eng. Chem. Res., 37, 3772 (1998).

    Article  CAS  Google Scholar 

  15. A. S. Harpham and R. L. Shambaugh, Ind. Eng. Chem. Res., 35, 3776 (1996).

    Article  CAS  Google Scholar 

  16. S. Xie, W. L. Han, G. J. Jiang, and C. Chen, J. Mater. Sci., 53, 6991 (2018).

    Article  CAS  Google Scholar 

  17. Y. F. Sun, B. W. Liu, X. H. Wang, and Y. C. Zeng, J. Appl. Polym. Sci., 122, 3520 (2011).

    Article  CAS  Google Scholar 

  18. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 41, 5125 (2002).

    Article  CAS  Google Scholar 

  19. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 42, 5541 (2003).

    Article  CAS  Google Scholar 

  20. E. M. Moore, R. L. Shambaugh, and D. V. Papavassiliou, J. Appl. Polym. Sci., 94, 909 (2004).

    Article  CAS  Google Scholar 

  21. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 46, 655 (2007).

    Article  CAS  Google Scholar 

  22. Y. F. Sun and X. H. Wang, J. Appl. Polym. Sci., 115, 1540 (2010).

    Article  CAS  Google Scholar 

  23. X. B. Hao, H. Huang, and Y. C. Zeng, Text. Res. J., 89, 3221 (2018).

    Article  Google Scholar 

  24. Y. L. Cheng, L. L. Wu, and T. Chen, Heat Transf. Res., 44, 473 (2013).

    Article  Google Scholar 

  25. M. A. Hassan, N. Anantharamaiah, S. A. Khan, and B. Pourdeyhimi, Ind. Eng. Chem. Res., 55, 2049 (2016).

    Article  CAS  Google Scholar 

  26. Y. D. Wang and X. H. Wang, Ind. Eng. Chem. Res., 52, 4597 (2013).

    Article  CAS  Google Scholar 

  27. Y. D. Wang and X. H. Wang, Polym. Eng. Sci., 54, 110 (2014).

    Article  CAS  Google Scholar 

  28. D. H. Tan, P. K. Herman, A. Janakiraman, F. S. Bates, S. Kumar, and C. W. Macosko, Chem. Eng. Sci., 80, 342 (2012).

    Article  CAS  Google Scholar 

  29. L. Jarecki, S. Blonski, A. Blim, and A. Zachara, J. Appl. Polym. Sci., 125, 4402 (2012).

    Article  CAS  Google Scholar 

  30. S. Xie, G. J. Jiang, B. L. Ye, and B. Q. Shentu, Polymers, 12, 279 (2020).

    Article  CAS  Google Scholar 

  31. S. Xie and Y. C. Zeng, Ind. Eng. Chem. Res., 52, 2116 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant 11702113 and 51805210), China Postdoctoral Science Foundation (Grant 2019M652075), the Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Zhejiang Province, Jiaxing University (Grant MTC2020-15), and Jiaxing Program of Science and Technology (Grant 2019AD32005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianyan Wu or Baoqing Shentu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Jiang, G., Wu, X. et al. Air Recirculation and Its Effect on Microfiber Spinning in Blunt-Die Melt Blowing. Fibers Polym 22, 703–710 (2021). https://doi.org/10.1007/s12221-021-0225-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0225-5

Keywords

Navigation