Skip to main content
Log in

Predicting the Cyclization Index and Density of Stabilized Polyacrylonitrile Tow from Processing Conditions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The production of polyacrylonitrile (PAN)-based carbon fiber includes two major steps, stabilization (oxidization) and carbonization. Stabilization is a slow and energy-consuming process and involves using a series of ovens that need to be carefully tuned to achieve desirable quality at the lowest cost. This usually involves meeting fiber density or cyclization levels at each zone of the oxidation furnace, often achieved through trial and error by a team of skilled operators. In this work, a simple empirical model was developed to predict density from oven system parameters and cyclization onset temperature of the PAN feedstock, parametrized as Sn, representing the oxidation depth. The relative cyclization index (RCI) and density of the fibers were analyzed after various oxidation treatments and were used to derive the model parameters. The RCI of stabilized fiber was well represented by a logistic function incorporating Sn while the fiber density was well predicted by a polynomial function of RCI. The model was verified using stabilization trials conducted on the same precursor in a continuous oven system and in a batch oven, and then on a second commercial precursor using the batch oven. Statistical analysis on these trials shows good agreement with model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Morgan, “Carbon Fibers and Their Composites”, Taylor & Francis, 2005.

  2. M. G. Dunham and D. D. Edie, Carbon, 30, 435 (1992).

    Article  CAS  Google Scholar 

  3. M. Maghe, C. Creighton, L. C. Henderson, M. G. Huson, S. Nunna, S. Atkiss, N. Byrne, and B. L. Fox, J. Mater. Chem. A, 4, 16619 (2016).

    Article  CAS  Google Scholar 

  4. B. A. Newcomb, Compos. Part A-Appl. Sci. Manuf., 91, 262 (2016).

    Article  CAS  Google Scholar 

  5. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polym. Degrad. Stabil., 92, 1421 (2007).

    Article  CAS  Google Scholar 

  6. Q. Ouyang, L. Cheng, H. Wang, and K. Li, Polym. Degrad. Stabil., 93, 1415 (2008).

    Article  CAS  Google Scholar 

  7. W. Watt and W. Johnson, Nature, 257, 210 (1975).

    Article  CAS  Google Scholar 

  8. E. Fitzer, W. Frohs, and M. Heine, Carbon, 24, 387 (1986).

    Article  CAS  Google Scholar 

  9. E. Fitzer and D. J. Müller, Carbon, 13, 63 (1975).

    Article  CAS  Google Scholar 

  10. J.-S. Tsai, J. Mater. Sci. Lett., 13, 1448 (1994).

    Article  CAS  Google Scholar 

  11. S. Nunna, M. Naebe, N. Hameed, C. Creighton, S. Naghashian, M. J. Jennings, S. Atkiss, M. Setty, and B. L. Fox, Polym. Degrad. Stabil., 125, 105 (2016).

    Article  CAS  Google Scholar 

  12. A. Takaku, T. Hashimoto, and T. Miyoshi, J. Appl. Polym. Sci., 30, 1565 (1985).

    Article  CAS  Google Scholar 

  13. L. Peebles Jr, P. Peyser, A. Snow, and W. Peters, Carbon, 28, 707 (1990).

    Article  CAS  Google Scholar 

  14. M. Nakatani, T. Kobayashi, Y. Imai, N. Yamamoto, and S. Sasaki, US Patent, 4,780,301 (1988).

  15. D. U. Park, N. K. Han, J. H. Ryu, W. H. Park, and Y. G. Jeong, Fiber. Polym., 19, 2007 (2018).

    Article  CAS  Google Scholar 

  16. S. J. Xiao, W. Y. Cao, B. Wang, L. H. Xu, and B. H. Chen, J. Appl. Polym. Sci., 127, 3198 (2013).

    Article  CAS  Google Scholar 

  17. I. Karacan and G. Erdogan, Fiber. Polym., 13, 295 (2012).

    Article  CAS  Google Scholar 

  18. H. Kakida and K. Tashiro, Polym. J., 29, 353 (1997).

    Article  CAS  Google Scholar 

  19. K. Badii, J. S. Church, G. Golkarnarenji, M. Naebe, and H. Khayyam, Polym. Degrad. Stabil., 131, 53 (2016).

    Article  CAS  Google Scholar 

  20. H. Khayyam, M. Naebe, O. Zabihi, R. Zamani, S. Atkiss, and B. Fox, IEEE Transactions on Industrial Informatics, 11, 887 (2015).

    Article  Google Scholar 

  21. Y. Xue, J. Liu, and J. Liang, Polym. Degrad. Stabil., 98, 219 (2013).

    Article  CAS  Google Scholar 

  22. H. Khayyam, R. N. Jazar, S. Nunna, G. Golkarnarenji, K. Badii, S. M. Fakhrhoseini, S. Kumar, and M. Naebe, Prog. Mater. Sci., 107, 100575 (2020).

    Article  CAS  Google Scholar 

  23. D. U. Park, J. H. Ryu, N. K. Han, W. H. Park, and Y. G. Jeong, Fiber. Polym., 19, 2439 (2018).

    Article  CAS  Google Scholar 

  24. S. Nunna, M. Maghe, R. Rana, R. J. Varley, D. B. Knorr, J. M. Sands, C. Creighton, L. C. Henderson, and M. Naebe, Materials, 12, 1069 (2019).

    Article  CAS  Google Scholar 

  25. S. Nunna, M. Maghe, S. M. Fakhrhoseini, B. Polisetti, and M. Naebe, Energies, 11, 1145 (2018).

    Article  CAS  Google Scholar 

  26. G. Collins, N. Thomas, and G. Williams, Carbon, 26, 671 (1988).

    Article  CAS  Google Scholar 

  27. A. Ju, S. Guang, and H. Xu, Carbon, 54, 323 (2013).

    Article  CAS  Google Scholar 

  28. J. S. Tsai and C. H. Lin, J. Appl. Polym. Sci., 43, 679 (1991).

    Article  CAS  Google Scholar 

  29. D. L. Alexander, A. Tropsha, and D. A. Winkler, J. Chem. Inform. Model., 55, 1316 (2015).

    Article  CAS  Google Scholar 

  30. B. Efron and R. J. Tibshirani, “An Introduction to the Bootstrap”, CRC Press, 1994.

Download references

Acknowledgement

The authors would like to thank Janice Hair and Lucy Cotter for fiber density testing, Nicole Phair-Sorensen and Debra Hamilton for DSC experiments, and Carbon Nexus team (Deakin University) for conducting the continuous oven processing trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menghe Miao.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilde, A.L., Alexander, D.L.J., Pierlot, A.P. et al. Predicting the Cyclization Index and Density of Stabilized Polyacrylonitrile Tow from Processing Conditions. Fibers Polym 22, 3241–3250 (2021). https://doi.org/10.1007/s12221-021-0011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0011-4

Keywords

Navigation