Skip to main content
Log in

Thermal Analysis on the Stabilization Behavior of Ternary Copolymers Based on Acrylonitrile, Methyl Acrylate and Itaconic Acid

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN)-based copolymers are widely used as a precursor for manufacturing high performance carbon fibers via a series of processes of thermal stabilization, carbonization, and graphitization. We have recently synthesized a series of copolymers with various compositions of acrylonitrile (AN), methyl acrylate (MA) and itaconic acid (IA) by using an efficient aqueous suspension polymerization. In this study, the influences of MA and IA units on thermal stabilization behavior of AN/MA/IA-based terpolymers has been investigated by thermal analyses using DSC and TGA. It was found that the glass transition temperatures (Tg) of AN/MA/IA-based terpolymers with a constant AN content increased with the IA content due to a specific interaction between carboxylic acid and nitrile groups, while the MA unit played a role of lowering Tg of the copolymers owing to the interruption of AN sequence with a strong dipole-dipole interaction. The exothermic peaks of DSC curves as well as the weight loss of TGA/DTG curves under air condition revealed that the IA unit in AN/MA/IA-based terpolymers contributed to accelerate the oxidation reaction especially under air condition and also to slow down the following cyclization and dehydrogenation reactions including isomerization, unlike PAN homopolymer and AN/MA-based bipolymers. On the other hand, the MA unit in AN/MA-based bipolymers and AN/MA/IA-based terpolymers served as a delaying agent on the overall thermal stabilization reactions of oxidation, cyclization and dehydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Rangarajan, V. A. Bhanu, D. Godshall, G. L. Wilkes, J. E. McGrath, and D. G. Baird, Polymer, 43, 2699 (2002).

    Article  CAS  Google Scholar 

  2. R. Devasia, C. P. Reghunadhan Nair, and K. N. Ninan, Polym. Int., 54, 1110 (2005).

    Article  CAS  Google Scholar 

  3. H. J. Lee, J. S. Won, S. C. Lim, T. S. Lee, J. Y. Yoon, and S. G. Lee, Text. Sci. Eng., 53, 103 (2016).

    Article  CAS  Google Scholar 

  4. S. Lee, J. Kim, B.-C. Ku, J. Kim, and H.-I. Joh, Adv. Chem. Eng. Sci., 2, 275 (2012).

    Article  CAS  Google Scholar 

  5. A. Burkanudeen, G. S. Krishnan, and N. Murali, J. Therm. Anal. Calorim., 112, 1261 (2013).

    Article  CAS  Google Scholar 

  6. S. N. A. M. Jamil, R. Daik, and I. Ahmad, Materials, 7, 6207 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Y. Ji, Y. G. Jeong, and W. H. Pakr, Text. Sci. Eng., 53, 285 (2016).

    Article  CAS  Google Scholar 

  8. Q. Ouyang, L. Cheng, H. Wang, and K. Li, Polym. Degrad. Stabil., 93, 1415 (2008).

    Article  CAS  Google Scholar 

  9. Y. Xue, J. Liu, and J. Liang, Polym. Deg. Stabil., 98, 219 (2013).

    Article  CAS  Google Scholar 

  10. S. Arbab and A. Zeinolebadi, Polym. Degrad. Stabil., 98, 2537 (2013).

    Article  CAS  Google Scholar 

  11. M. C. Paiva, P. Kotasthane, D. D. Edie, and A. A. Ogale, Carbon, 41, 1399 (2003).

    Article  CAS  Google Scholar 

  12. A. V. Shlyakhtin, D. A. Lemenovskii, and I. E. Nifant’ev, Mendeleev Commun., 23, 277 (2013).

    Article  CAS  Google Scholar 

  13. S. R. Hutchinson, A. E. Tonelli, B. S. Gupta, and D. R. Buchanan, J. Mater. Sci., 43, 5143 (2008).

    Article  CAS  Google Scholar 

  14. P. Rangarajan, J. Yang, V. A. Bhanu, D. Godshall, J. E. McGrath, G. Wilkes, and D. G. Baird, J. Appl. Polym. Sci., 85, 69 (2002).

    Article  CAS  Google Scholar 

  15. Y. H. Bang, S. Lee, and H. H. Cho, J. Appl. Polym. Sci., 68, 2205 (1998).

    Article  CAS  Google Scholar 

  16. V. A. Bhanu, P. Rangarajan, K. Wiles, M. Bortner, M. Sankarpandian, D. Godshall, T. E. Glass, A. K. Banthia, J. Yang, and G. Wilkes, Polymer, 43, 4841 (2002).

    Article  CAS  Google Scholar 

  17. S.-P. Rwei, T.-F. Way, and Y.-S. Hsu, Polym. Deg. Stabil., 98, 2072 (2013).

    Article  CAS  Google Scholar 

  18. Y. Eom, C. Kim, and B. C. Kim, Macromol. Res., 25, 262 (2017).

    Article  CAS  Google Scholar 

  19. N. U. Nguyen-Thai and S. C. Hong, Macromolecules, 46, 5882 (2013).

    Article  CAS  Google Scholar 

  20. N. U. Nguyen-Thai and S. C. Hong, Carbon, 69, 571 (2014).

    Article  CAS  Google Scholar 

  21. S. N. A. M. Jamil, R. Daik, and I. Ahmad, Int. J. Chem. Eng. Appl., 3, 416 (2012).

    Google Scholar 

  22. N. Han, X. X. Zhang, X. C. Wang, and N. Wang, Macromol. Res., 18, 144 (2010).

    Article  CAS  Google Scholar 

  23. D. U. Park, N. K. Han, J. H. Ryu, W. H. Park, and Y. G. Jeong, Fiber. Polym., 19, 2007 (2018).

    Article  CAS  Google Scholar 

  24. P. Bajaj, T. V. Sreekumar, and K. Sen, J. Appl. Polym. Sci., 79, 1640 (2001).

    Article  CAS  Google Scholar 

  25. R. Devasia, C. P. Reghunadhan Nair, and K. N. Ninan, Eur. Polym. J., 39, 537 (2003).

    Article  CAS  Google Scholar 

  26. K. B. Wiles, V. A. Bhanu, A. J. Pasquale, T. E. Long, and J. E. McGrath, J. Polym. Sci. Part A: Polym. Chem., 42, 2994 (2004).

    Article  CAS  Google Scholar 

  27. R. Chûjô, H. Ubara, and A. Nishioka, Polym. J., 3, 670 (1972).

    Article  Google Scholar 

  28. S. N. A. M. Jamil, R. Daik, and I. Ahmad, J. Polym. Res., 14, 379 (2007).

    Article  CAS  Google Scholar 

  29. S. Cetiner, S. Sen, B. Arman, and A. S. Sarac, J. Appl. Polym. Sci., 127, 3830 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.U., Ryu, J.H., Han, N.K. et al. Thermal Analysis on the Stabilization Behavior of Ternary Copolymers Based on Acrylonitrile, Methyl Acrylate and Itaconic Acid. Fibers Polym 19, 2439–2448 (2018). https://doi.org/10.1007/s12221-018-8782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8782-y

Keywords

Navigation