Skip to main content
Log in

A Study on Structural Characterization of Thermally Stabilized PAN Precursor Fibers Impregnated with Ammonium Bromide before Carbonization Stage

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Thermal-oxidative stabilization of polyacrylonitrile (PAN) fiber pretreated with ammonium bromide (NH4Br) was performed in the air atmosphere at temperatures between 200 and 250 °C for periods of 5 to 75 min in a multistep approach. The study demonstrates that the NH4Br incorporation is highly effective in accelerating nitrile group cyclization by reducing the time required to form a thermally stable structure. After 60 min of the multistep stabilization, NH4Br incorporated and stabilized PAN was entirely thermally stable, infusible, and non-burning. XRD analysis showed the conversion of the pristine PAN molecular structure from a laterally ordered condition to a very disordered amorphous structure by crosslinking and aromatization process. Infrared analysis indicated rapid and concurrent aromatization and dehydrogenation reactions assisted by the formation of oxygen-containing functional groups. With the progression of the stabilization period, TGA thermograms revealed a comparative increase in thermal stability, as directed by the continuous rise of carbon yield. By decreasing the required time for the stabilization process of PAN fiber, the use of NH4Br impregnation is expected to enhance carbon fiber productivity at a reduced cost considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Zabihi, M. Ahmadi, Q. Li, S. Shafei, M. G. Huson, and M. Naebe, Compos. Sci. Technol., 148, 49 (2017).

    Article  CAS  Google Scholar 

  2. D. D. Edie, Carbon, 36, 345 (1998).

    Article  CAS  Google Scholar 

  3. W. X. Zhang and M. S. Li, J. Mater. Sci. Technol., 21, 581 (2005).

    CAS  Google Scholar 

  4. X. Huang, Materials, 2, 2369 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  5. D. Sawai, Y. Fujii, and T. Kanamoto, Polymer, 47, 4445 (2006).

    Article  CAS  Google Scholar 

  6. C. Hou, R. Qu, J. Liu, L. Ying, and C. Wang, J. Appl. Polym. Sci., 100, 3372 (2006).

    Article  CAS  Google Scholar 

  7. T.-H. Ko, S.-C. Liau, and M.-F. Lin, J. Mater. Sci., 27, 6071 (1992).

    Article  CAS  Google Scholar 

  8. N. An, Q. Xu, L. H. Xu, and S. Z. Wu, Adv. Mater. Res., 11, 383 (2006).

    Article  Google Scholar 

  9. L. Jie and Z. Wangxi, J. Appl. Polym. Sci., 97, 2047 (2005).

    Article  Google Scholar 

  10. B. A. Newcomb, Compos. Part A Appl. Sci. Manuf., 91, 262 (2016).

    Article  CAS  Google Scholar 

  11. K. Xia, Q. Ouyang, Y. Chen, X. Wang, X. Qian, and L. Wang, ACS Sustain. Chem. Eng., 4, 159 (2016).

    Article  CAS  Google Scholar 

  12. E. A. Morris, M. C. Weisenberger, M. G. Abdallah, F. Vautard, H. Grappe, S. Ozcan, F. L. Paulauskas, C. Eberle, D. Jackson, and S. J. Mecham, Carbon, 101, 245 (2016).

    Article  CAS  Google Scholar 

  13. P. J. Sanchez-Soto, M. A. Aviles, J. C. D. Rıo, J. M. Gines, J. Pascual, and J. L. Perez-Rodrıguez, J. Anal. Appl. Pyrol., 58, 155 (2001).

    Article  Google Scholar 

  14. J. Liu, S. Xiao, Z. Shen, L. Xu, L. Zhang, and J. Peng, Polym. Degrad. Stab., 150, 86 (2018).

    Article  CAS  Google Scholar 

  15. N. Tajaddod, H. Li, and M. L. Minus, Polymer, 137, 346 (2018).

    Article  CAS  Google Scholar 

  16. H. Mirbaha, S. Arbab, A. Zeinolebadi, and P. Nourpanah, Smart Mater. Struct., 22, 45019 (2013).

    Article  CAS  Google Scholar 

  17. N. Yusof and A. F. Ismail, J. Anal. Appl. Pyrol., 93, 1 (2012).

    Article  CAS  Google Scholar 

  18. P. Rangarajan, J. Yang, V. Bhanu, D. Godshall, J. McGrath, G. Wilkes, and D. Baird, J. Appl. Polym. Sci., 85, 69 (2002).

    Article  CAS  Google Scholar 

  19. Z. Wangxi, L. Jie, and W. Gang, Carbon, 41, 2805 (2003).

    Article  Google Scholar 

  20. D. He, C. Wang, Y. Bai, and B. Zhu, J. Mater. Sci. Technol., 21, 376 (2005).

    CAS  Google Scholar 

  21. E. Frank, F. Hermanutz, and M. R. Buchmeiser, Macromol. Mater. Eng., 297, 493 (2012).

    Article  CAS  Google Scholar 

  22. N. U. Nguyen-Thai and S. C. Hong, Macromolecules, 46, 5882 (2013).

    Article  CAS  Google Scholar 

  23. J. Hao, Y. Liu, and C. Lu, Polym. Degrad. Stab., 147, 89 (2018).

    Article  CAS  Google Scholar 

  24. G. Golkarnarenji, M. Naebe, K. Badii, A. S. Milani, R. N. Jazar, and H. Khayyam, Comput. Chem. Eng., 109, 276 (2018).

    Article  CAS  Google Scholar 

  25. G. Golkarnarenji, M. Naebe, K. Badii, A. S. Milani, R. N. Jazar, and H. Khayyam, Materials, 11, 385 (2018).

    Article  PubMed Central  Google Scholar 

  26. I. Karacan and G. Erdoğan, Polym. Eng. Sci., 52, 937 (2012).

    Article  CAS  Google Scholar 

  27. I. Karacan and T. Soy, J. Appl. Polym. Sci., 128, 1239 (2013).

    Article  CAS  Google Scholar 

  28. I. Karacan and G. Baysal, Fiber. Polym., 13, 864 (2012).

    Article  CAS  Google Scholar 

  29. M. M. Rahman, T. Demirel, K. Ş. Tunçel, and I. Karacan, J. Mater. Sci., 56, 14844 (2021).

    Article  CAS  Google Scholar 

  30. J. Troitzsch, “International Plastics Flammability Handbook”, Munich, Hanser Gardner Publications, 1990.

    Google Scholar 

  31. J. H. Troitzsch, Chim. Oggi/Chemistry Today, 16, 18 (1998).

    CAS  Google Scholar 

  32. S. Mostashari, H. Moafi, and S. Mostashari, J. Therm. Anal. Calorim., 96, 535 (2009).

    Article  CAS  Google Scholar 

  33. I. Karacan and G. Erdoğan, J. Inorg. Organomet. Polym. Mater., 22, 1016 (2012).

    Article  CAS  Google Scholar 

  34. D. P. Bahl, R. B. Mathur, and T. L. Dhami, Mater. Sci. Eng., 73, 105 (1985).

    Article  CAS  Google Scholar 

  35. W. Sweeny, “Cyclization of Acrylic Fiber”, US4603041 (1986).

    Google Scholar 

  36. S. Sikkanthar, S. Karthikeyan, S. Selvasekarapandian, D. V. Pandi, S. Nithya, and C. Sanjeeviraja, J. Solid State Electrochem., 19, 987 (2015).

    Article  CAS  Google Scholar 

  37. Y. Zhu, M. A. Wilding, and S. K. Mukhopadhyay, J. Mater. Sci., 31, 3831 (1996).

    Article  CAS  Google Scholar 

  38. M.-J. Yu, Y.-J. Bai, C.-G. Wang, Y. Xu, and P.-Z. Guo, Mater. Lett., 61, 2292 (2007).

    Article  CAS  Google Scholar 

  39. A. M. Hindeleh and D. J. Johnson, Polymer, 19, 27 (1978).

    Article  CAS  Google Scholar 

  40. A. R. Stokes, Proc. Phys. Soc., 61, 382 (1948).

    Article  CAS  Google Scholar 

  41. P. Bajaj and A. K. Roopanwal, J. Macromol. Sci. Part C Polym. Rev., 37, 97 (1997).

    Article  Google Scholar 

  42. I. Karacan and G. Erdoğan, Fiber. Polym., 13, 855 (2012).

    Article  CAS  Google Scholar 

  43. I. Karacan and G. Erdŏgan, Polym. Eng. Sci., 52, 467 (2012).

    Article  CAS  Google Scholar 

  44. N. Grassie and R. McGuchan, Eur. Polym. J., 8, 257 (1972).

    Article  CAS  Google Scholar 

  45. J. J. Rafalko, J. Polym. Sci. Polym. Phys. Ed., 22, 1211 (1984).

    Article  CAS  Google Scholar 

  46. N. Grassie and R. McGuchan, Eur. Polym. J., 7, 1091 (1971).

    Article  CAS  Google Scholar 

  47. A. J. Clarke and J. E. Bailey, Nature, 243, 146 (1973).

    Article  CAS  Google Scholar 

  48. I. Shimada, T. Takahagi, M. Fukuhara, K. Morita, and A. Ishitani, J. Polym. Sci. Part A Polym. Chem., 24, 1989 (1986).

    Article  CAS  Google Scholar 

  49. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polym. Degrad. Stab., 92, 1421 (2007).

    Article  CAS  Google Scholar 

  50. E. V. Loginova, I. V. Mikheev, D. S. Volkov, and M. A. Proskurnin, Anal. Methods, 8, 371 (2016).

    Article  CAS  Google Scholar 

  51. T. Chung, Y. Schlesinger, S. Etemad, A. G. Macdiarmid, and A. J. Heeger, J. Polym. Sci. Polym. Phys. Ed., 22, 1239 (1984).

    Article  CAS  Google Scholar 

  52. A. G. Dumanlı and A. H. Windle, J. Mater. Sci., 47, 4236 (2012).

    Article  Google Scholar 

  53. G. Leal and J.-I. Peñaloza, CT&F-Ciencia, Tecnol. y Futur., 2, 41 (2002).

    CAS  Google Scholar 

  54. S. Kim, Y. S. Chung, H.-S. Choi, F.-L. Jin, and S.-J. Park, Bull. Korean Chem. Soc., 34, 3733 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the YÖK 100/2000 Micro and Nano Technology Materials PhD scholarship of the Higher Education Council of Turkey to Tuba DEMIREL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Mahbubor Rahman or Ismail Karacan.

Ethics declarations

There is no conflict of interest among the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirel, T., Rahman, M.M., Tunçel, K.Ş. et al. A Study on Structural Characterization of Thermally Stabilized PAN Precursor Fibers Impregnated with Ammonium Bromide before Carbonization Stage. Fibers Polym 23, 3046–3057 (2022). https://doi.org/10.1007/s12221-022-4901-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4901-x

Keywords

Navigation