Skip to main content
Log in

Multipurpose Nonwoven Viscose/Polypropylene Fabrics: Effect of Fabric Characteristics and Humidity Conditions on the Volume Electrical Resistivity and Dielectric Loss Tangent

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, the volume electrical resistivity and dielectric loss tangent of viscose/polypropylene multipurpose nonwoven fabrics were examined. According to the obtained results, the changes in the volume electrical resistivity depend on the applied chemical bonding agent, viscose fiber content, moisture content, fabric thickness, fabric weight, and relative air humidity. Based on the volume electrical resistivity hysteresis, the portion of sorbed moisture retained in the material after desorption, as well as the portion of moisture removed from the material during desorption, were determined. Furthermore, the dielectric loss tangent measured at the frequency range between 30 Hz and 140 kHz, for the samples exposed to different relative air humidity (40 % and 80 %) and wet samples, is dependent on the chemical bonding agent, viscose fiber content, moisture content, as well as frequency of the external electric field. The dielectric loss tangent measured at 80 % relative air humidity showed a peak at about 100 Hz, while for the wet samples, the peak was observed in the frequency range between 30 and 140 kHz. In a wet state, the dielectric loss tangent is primarily influenced by the water molecules present in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wirsching in “Nonwoven Fabrics” (W. Albrecht, H. Fuchs, and W. Kittelmann Eds.), 1st ed., p.505, WILEYVCH Verlag GmbH & Co. KgaA, Weinheim, 2003.

  2. K. A. Asanovic, D. D. Cerovic, M. M. Kostic, S. B. Maletic, and A. D. Kramar, J. Polym. Sci. Part: B-Polym. Phys., 56, 974 (2018).

    Google Scholar 

  3. D. Cerovic, K. Asanovic, S. Maletic, and J. R. Dojcilovic, Compos. Part: B-Eng., 49, 65 (2013).

    Article  CAS  Google Scholar 

  4. D. D. Cerovic, K. A. Asanovic, M. M. Kostic, T. V. Mihailovic, and A. Ivanovska, “Congress of the Society of Chemist and Technologists of Macedonia”, p.257, 2018.

  5. D. Cerovic, J. Dojcilovic, K. Asanovic, T. V. Mihailovic, and T. A. Mihajilidi, “International Conference of the Balkan Physical Union BPU-7”, p.477, 2009.

  6. S. Sengupta and A. Sengupta, J. Text. Inst., 104, 132 (2013).

    Article  Google Scholar 

  7. P. D. Dubrovski, Fiber. Polym., 13, 1353 (2012).

    Article  CAS  Google Scholar 

  8. K. Bal and V. K. Kothari, Fiber. Polym., 8, 1745 (2014).

    Article  Google Scholar 

  9. K. A. Asanovic, T. A. Mihajlidi, S. V. Milosavljevic, D. D. Cerovic, and J. R. Dojcilovic, J. Electrostat., 65, 162 (2007).

    Article  CAS  Google Scholar 

  10. A. D. Kramar, K. A. Asanović, B. N. Obradović, M. M. Kuraica, and M. M. Kostic, Fiber. Polym., 19, 571 (2018).

    Article  CAS  Google Scholar 

  11. K. A. Asanovic, D. D. Cerovic, T. V. Mihailovic, M. M. Kostic, and M. Reljic, Indian J. Fibre. Text. Res., 40, 363 (2015).

    CAS  Google Scholar 

  12. D. D. Cerovic, I. Petronijevic, and J. R. Dojcilovic, Polym. Advan. Technol., 25, 338 (2014).

    Article  CAS  Google Scholar 

  13. D. D. Cerovic, J. R. Dojcilovic, K. A. Asanovic, and T. A. Mihajlidi, J. Appl. Phyis., 106, 084101–1 (2009).

    Article  Google Scholar 

  14. A. Ivanovska, D. Cerovic, S. Maletic, I. Jankovic Castvan, K. Asanovic, and M. Kostic, Cellulose, 26, 5133 (2019).

    Article  CAS  Google Scholar 

  15. K. Asanović, T. Mihailović, P. Škundrić, and Lj. Simovic, Text. Res. J., 80, 1665 (2010).

    Article  Google Scholar 

  16. X. Wang, W. Xu, W. Li, and W. Cui, Text. Res. J., 79, 753 (2009).

    Article  CAS  Google Scholar 

  17. G. George, K. Joseph, E. R. Nagarajan, E. T. Jose, and K. C. George, Compos. Part: A-Appl. S., 47, 12 (2013).

    Article  CAS  Google Scholar 

  18. E. Jayamani, S. Hamdan, Md. R. Rahman, and M. K. B. Bakrti, Procedia Eng., 97, 536 (2014).

    Article  CAS  Google Scholar 

  19. P. Li, Y. Tao, and S. Q. Shi, BioResources, 9, 2681 (2014).

    Google Scholar 

  20. E. Markiewicz, D. Paukszta, and S. Borysiak, Mater. Sci-Poland, 27, 581 (2009).

    CAS  Google Scholar 

  21. W. E. Morton and J. S. W. Hearle, “Physical properties of Textile Fibres”, 4th ed., pp.625–664, Woodhead Publishing Limited in Association with the Textile Institute, Cambridge, 2008.

    Book  Google Scholar 

  22. M. M. Kostic, B. M. Pejic, K. A. Asanovic, V. M. Aleksic, and P. D. Skundirc, Ind. Crops. Prod., 32, 169 (2010).

    Article  CAS  Google Scholar 

  23. J. W. S. Hearle in “Regenerated Cellulose Fibres”, 1st ed. (C. Woodings Ed.), pp.199–234, Woodhead Publishing Limited, Cambridge, 2001.

  24. https://omnexus.specialchem.com/polymer-properties/properties/volume-resistivity (Accessed January 25, 2018).

  25. ISO 9073-1:1989, Textiles-Test Methods for Nonwovens-Part 1: Determination of Mass per Unit Area.

  26. A. Kramar, J. Milanovic, M. Korica, T. Nikolic, K. Asanovic, and M. Kostic, Cellulose Chem. Technol., 48, 189 (2014).

    CAS  Google Scholar 

  27. J. Široky, R. S. Blackburn, T. Bechtold, J. Tailor, and P. White, Cellulose, 17, 103 (2010).

    Article  Google Scholar 

  28. I. R. Comnea-Stancu, K. Wieland, G. Ramer, A. Schwaighofer, and B. Lendl, Appl. Spectrosc., 71, 939 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, Vib. Spectrosc., 36, 23 (2004).

    Article  CAS  Google Scholar 

  30. F. Carrillo, X. Colom, J. J. Sunol, and J. Saurina, Eur. Polym. J., 40, 2229 (2004).

    Article  CAS  Google Scholar 

  31. I. Pumure, S. Ford, J. Shannon, C. Kohen, A. Mulcahy, K. Frank, S. Sisco, and N. Chaukura, Am. J. Anal. Chem., 6, 305 (2015).

    Article  CAS  Google Scholar 

  32. L. Barbeş, C. Rădulescu, and C. Stihi, Rom. Rep. Phys., 66, 765 (2014).

    Google Scholar 

  33. https://jordilabs.com/wp-content/uploads/2014/09/Case_Study_FTIR_For_Identification_Of_Contamination.pdf. (Accessed November 26, 2018).

  34. V. P. Radovitskiy and B. N. Strel’tsov, “Elektrodinamika tekstil’nyh volokon”, 1st ed., pp.91–98, Legkaya Industriya, Moskva, 1967.

    Google Scholar 

  35. E. Saukkonen, K. Lyytikainen, K. Backfolk, R. Maldzius, R. Sidaravicius, T. Lozovski, and A. Poskus, Cellulose, 22, 1003 (2015).

    Article  CAS  Google Scholar 

  36. N. S. Shah, P. S. Shah, and V. A. Rana, Ionics, 21, 3217 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Andrijana Zekic, Laboratory for Physics of Crystal Growth of the Faculty of Physics, University of Belgrade, for the SEM analysis, and Slavica B. Maletic, Laboratory for Condensed Matter and Physics of Materials, Faculty of Physics, University of Belgrade, for the ATR-FTIR analysis.

This work was supported by the Ministry of Education, Science and Technological Development of the Government of the Republic of Serbia [Contract No.: 451-03-68/2020-14/200135 and 451-03-68/2020-14/200162].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koviljka A. Asanovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asanovic, K.A., Cerovic, D.D., Kostic, M.M. et al. Multipurpose Nonwoven Viscose/Polypropylene Fabrics: Effect of Fabric Characteristics and Humidity Conditions on the Volume Electrical Resistivity and Dielectric Loss Tangent. Fibers Polym 21, 2407–2416 (2020). https://doi.org/10.1007/s12221-020-1340-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1340-4

Keywords

Navigation