Skip to main content
Log in

The Effect of HPMC and CNC on the Structure and Properties of Alginate Fibers

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Bio-composite alginate fibers with binary and ternary blends were prepared by using cellulose nanocrystal (CNC) and hydroxypropyl methylcellulose (HPMC) as composite fillers through wet-spinning method. Structural, thermal, mechanical properties and surface morphology of fibers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Mechanical strength testing, Scanning Electron Microscopy (SEM). The thermal stability and mechanical performance of SA/HPMC and SA/HPMC/CNC composite fibers improved as the increasing of crystallinity and intermolecular H-bonding interaction of the fibers. HPMC is helpful to improve the extensibility and stiffness of alginate fibers, and CNC can further enhance the stiffness of SA/HPMC composite fibers. The tensile strength, elongation at break, the initial modulus and work at break of SA/HPMC/CNC composite fibers were superior to those of alginate fibers. Roughness of surface and tensile section of SA/HPMC and SA/HPMC/CNC composite fibers got increased. Water absorbency and salt resistance were significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Ureña-Benavides, P. J. Brown, and C. L. Kitchens, Langmuir, 26, 14263 (2010).

    Article  Google Scholar 

  2. K. Norajit, K. M. Kim, and G. H. Ryu, J. Food Eng., 98, 377 (2010).

    Article  CAS  Google Scholar 

  3. W. Shen and Y. L. Hsieh, Carbohydr. Polym., 102, 893 (2014).

    Article  CAS  Google Scholar 

  4. S. Woraharn, C. Chaiyasut, B. Sirithunyalug, and J. Sirithunyalug, Afr. J. Microbiol. Res., 4, 2086 (2010).

    CAS  Google Scholar 

  5. J. Liu, C. J. Zhang, D. G. Miao, S. Y. Shu, F. L. Deng, C. H. Dong, L. Zhang, and P. Zhu, J. Eng. Fiber Fabr., 13, 6 (2018).

    CAS  Google Scholar 

  6. X. Y. Li, X. G. Chen, Z. W Sun, H. J. Park, and D. S. Cha, Carbohydr. Polym., 83, 1479 (2011).

    Article  CAS  Google Scholar 

  7. L. Yang, G. Liang, Z. Zhang, and S. B. He, J. Appl. Polym. Sci., 114, 1235 (2010).

    Article  Google Scholar 

  8. H. H. Tønnesen and J. Karlsen, Drug Dev. Ind. Pharm., 28, 621 (2002).

    Article  Google Scholar 

  9. J. J. Zhang, Q. Ji, X. H. Shen, Y. Z. Xia, L. W. Tan, and Q. S. Kong, Polym. Degrad. Stab., 96, 936 (2011).

    Article  CAS  Google Scholar 

  10. M. J. Robert, M. Ashlie, N. John, S. John, and Y. Jeff, Chem. Soc. Rev., 40, 3941 (2011).

    Article  Google Scholar 

  11. X. M. Ma, R. Li, X. Zhao, Q. Ji, Y. C. Xing, J. Sunarso, and Y. Z. Xia, Compos. Part A: Appl. Sci. Manufac., 96, 155 (2017).

    Article  CAS  Google Scholar 

  12. C. K. Yeom and K. H. Lee, J. Appl. Polym. Sci., 67, 1607 (1998).

    Article  Google Scholar 

  13. Y. He, N. Zhang, Q. Gong, H. X. Qiu, W. Wang, and J. P. Gao, Carbohydr. Polym., 88, 1100 (2012).

    Article  CAS  Google Scholar 

  14. S. Liu, Y. Li, and L. Li, Carbohydr. Polym., 160, 62 (2017).

    Article  Google Scholar 

  15. N. Işiklan, J. Appl. Polym. Sci., 99, 1310 (2006).

    Article  Google Scholar 

  16. S. C. Angadi, L. S. Manjeshwar, and T. M. Aminabhavi, Int. J. Biol. Macromol., 51, 45 (2012).

    Article  CAS  Google Scholar 

  17. Y. Yue, J. Q. Han, G. P. Han, A. D. French, Y. D. Qi, and Q. L. Wu, Carbohydr. Polym., 147, 155 (2016).

    Article  CAS  Google Scholar 

  18. L. Fan, M. Cao, S. Gao, T. Wang, H. Wu, M. Peng, X. Y. Zhou, and M. Nie, Carbohydr. Polym., 93, 380 (2013).

    Article  CAS  Google Scholar 

  19. G. R. Shetty, B. L. Rao, S. Asha, Y. J. Wang, and Y. Sangappa, Fiber. Polym., 16, 1734 (2015).

    Article  CAS  Google Scholar 

  20. W. T. Hay, G. F. Fanta, S. C. Peterson, A. J. Thomas, K. D. Utt, K. A. Walsh, V. M. Boddu, and G. W. Selling, Carbohydr. Polym., 188, 76 (2018).

    Article  CAS  Google Scholar 

  21. F. Víctor, J. P. Quintero, J. Alberto, and I. Albert, Trends. Food. Sci. Tech., 22, 292 (2011).

    Article  Google Scholar 

  22. J. Siepmann and N. A. Peppas, Adv. Drug. Deliv. Rev., 64, 163 (2012).

    Article  Google Scholar 

  23. L. Zhang, Y. Q. Lu, Y. X. Yu, Q. Li, J. Y. Qian, and X. L. He, Int. J. Biol. Macromol., 137, 1013 (2019).

    Article  CAS  Google Scholar 

  24. C. C. Ding, M. Zhang, and G. Li, Carbohydr. Polym., 119, 194 (2015).

    Article  CAS  Google Scholar 

  25. H. Dong, K. E. Strawhecker, J. F. Snyder, J. A. Orlicki, R. S. Reiner, and A. W. Rudie, Carbohydr. Polym., 87, 2488 (2012).

    Article  CAS  Google Scholar 

  26. M. Abdollahi, M. Alboofetileh, M. Rezaei, and R. Behrooz, Food. Hydrocolloids, 32, 416 (2013).

    Article  CAS  Google Scholar 

  27. J. Yang, C. R. Han, J. F. Duan, F. Xu, and R. C. Xu, ACS Appl. Mater. Interfaces, 5, 3199 (2013).

    Article  CAS  Google Scholar 

  28. J. Guo, Q. H. Chen, Y. Y. Zhang, Y. M. Gong, and H. Zhang, Adv. Mater. Res., 652, 1562 (2013).

    Article  Google Scholar 

  29. J. Liu, R. Zhang, M. Y. Ci, S. Y. Sui, and P. Zhu, J. Eng. Fibers. Fabr., 14, 1 (2019).

    Google Scholar 

  30. T. C. Suekama, J. Hu, T. Kurokawa, J. Gong, and S. Gehrke, ACS Macro. Lett., 2, 137 (2013).

    Article  CAS  Google Scholar 

  31. Q. Q. Wang, Y. Liu, C. J. Zhang, C. Zhang, and P. Zhu, Mater. Sci. Eng: C., 99, 1469 (2019).

    Article  CAS  Google Scholar 

  32. A. S. Sangappa, T. Demappa, G. Sanjeev, P. Parameswara, and R. Somashekar, Nucl. Instrum. Methods Phys. Res., Sect B, 267, 2385 (2009).

    Article  CAS  Google Scholar 

  33. K. T. Shalumon, K. H. Anulekha, S. V. Nair, K. P. Chennazhi, and R. Jayakumar, Int. J. Biol. Macromol., 49, 254 (2011).

    Article  Google Scholar 

  34. J. Y. Jiang, W. H. Yang, Y. P. Cheng, Z. D. Liu, Q. Zhang, and K. Zhao, Fuel, 239, 559 (2019).

    Article  CAS  Google Scholar 

  35. A. Watthanaphanit, P. Supaphol, H. Tamura, S. Tokura, and A. Rujiravanit, J. Appl. Polym. Sci., 110, 890 (2008).

    Article  CAS  Google Scholar 

  36. Y. Jiang, W. Guo, and H. Yang, Comput. Mater. Sci., 43, 731 (2008).

    Article  Google Scholar 

  37. Y. Y. Bai, Y. H. Lei, X. J. Shen, J. Luo, C. L. Yao, and R. C. Sun, Carbohydr. Polym., 174, 610 (2017).

    Article  CAS  Google Scholar 

  38. Z. Deng, Cement. Concrete. Comp., 27, 131 (2005).

    Article  CAS  Google Scholar 

  39. J. Liu, Y. Liu, D. G. Miao, C. J. Zhang, and P. Zhu, Fiber. Polym., 19, 1605 (2018).

    Article  CAS  Google Scholar 

  40. Y. J. Kim, K. J. Yoon, and S. W. Ko, J. Appl. Polym. Sci., 78, 1979 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Liu or Shuying Sui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ci, M., Liu, J., Shang, S. et al. The Effect of HPMC and CNC on the Structure and Properties of Alginate Fibers. Fibers Polym 21, 2179–2185 (2020). https://doi.org/10.1007/s12221-020-1264-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1264-z

Keywords

Navigation